Sechster Abschnitt.

Gefäße.

§ 58. Hohlzylinder.

1. Innerer und äußerer Druck.

Unter Bezugnahme auf Fig. 1 bezeichne

\(r_i \) den inneren Halbmesser des an den Stirnseiten geschlossenen vorausgesetzten Hohlzylinders,

\(r_a \) den äußeren Halbmesser desselben,

\(p_i \) die Pressung der den Zylinderhohlraum erfüllenden Flüssigkeit,

\(p_a \) die Pressung der den Zylinder umschließenden Flüssigkeit.

Der Abschluß an den Stirnseiten des Zylinders sei derart, daß die Formänderung des abschließenden Bodens einen Einfluß auf die Zylinderwandung nicht äußere, oder daß dieser wenigstens unerheblich ausfälle.

Der Zylinder werde auf ein rechtwinkliges Koordinatensystem bezogen, in der Weise, daß die \(x \)-Achse mit der Zylinderachse,
die \(yz\)-Ebene mit der einen, den Hohlraum begrenzenden Stirn-
ene des Zylinders zusammenfüllt, wie dies Fig. 2 erkennen läßt.

Wir greifen einen beliebigen Punkt \(P\) des Zylinders heraus,
welcher in der \(xz\)-Ebene liegt und vor Eintritt der Formänderung
absteht:

von der \(yz\)-Ebene um \(x\), und von der Zylinderachse um \(z\).

Unter Einwirkung der den Zylinder belastenden Flüssigkeits-
pressungen wird sich außer \(x\) noch \(z\), und zwar um \(\zeta\), vergrößern.
Aus der \(xz\)-Ebene tritt der Punkt hierbei nicht heraus.
Ferner werden im Punkte \(P\) folgende Spannungen entstehen:

\(\sigma_x\) in Richtung der \(x\)-Achse, d. i. in achsialer Richtung,
\(\sigma_y\) in der Richtung des Umfanges,
\(\sigma_z\) in Richtung der \(z\)-Achse, d. i. in radialer Richtung.

Dementsprechend wirken auf das unendlich kleine Körper-
element, Fig. 3, welches wir uns durch Zylinderflächen im Ab-
stande \(z \) und \(z + dz \) aus dem Zylinder herausgeschnitten denken, in der Bildebene der Figur die Kräfte:

\[
\sigma_z \cdot 2 z \, dp \, dx \text{ radial einwärts,}
\]

\[
\left(\sigma_z + \frac{d\sigma_z}{dz} \right) \cdot 2 (z + dz) \, dp \, dx \text{ radial auswärts,}
\]

\[
\sigma_y \cdot dz \, dx \text{ senkrecht zu den beiden Flächen } dz \, dx.
\]

Der Gleichgewichtszustand fordert nun, daß die Summe der Kräfte in senkrechter Richtung gleich Null ist, d. h.

\[
\sigma_z \cdot 2 z \, dp \, dx - \left(\sigma_z + \frac{d\sigma_z}{dz} \right) \cdot 2 (z + dz) \, dp \, dx + 2 \sigma_y \cdot dz \, dx \cdot \sin(dp) = 0, \tag{1}
\]

woraus sich unter Beachtung, daß \(\sin(dp) = -\, dp \), und nach Division mit \(2 \, dp \, dx \, dz \) bei Vernachlässigung des unendlich kleinen Gliedes

\[
\frac{d\sigma_z}{dz} \, dz
\]

gegenüber den übrigen endlichen Größen ergibt

\[
\frac{d\sigma_z}{dz} = \frac{1}{z} (\sigma_y - \sigma_z). \tag{1}
\]

\[1\) Liegt die Aufgabe vor, die Beanspruchung eines rotierenden Hohlzylinders infolge der Fliehkraft zu bestimmen, so ist diese Gleichung noch durch die auswärts gerichtete Fliehkraft des Körperelementes, d. h. durch Hinzufügung des Gliedes

\[
-\gamma \frac{2 z \, dp \cdot dz \, dx}{g} \omega^2 z
\]

zu ergänzen, worin

\(\gamma \) das Gewicht der Raumeinheit,

\(\omega \) die Winkelgeschwindigkeit,

\(g \) die Beschleunigung der Schwere

bedeutet.

Gleichung 1 geht damit über in

\[
\frac{d\sigma_z}{dz} = \frac{1}{z} (\sigma_y - \sigma_z) - \gamma \frac{\omega^2}{g} z.
\]

Im übrigen ist in gleicher Weise vorzugehen, wie oben angegeben.
In § 7 fanden wir unter der Voraussetzung vollkommener Gleichartigkeit des Materials für ein beliebiges Körperelement, welches in Richtung der drei Achsen gleichzeitig die Spannungen \(\sigma_x, \sigma_y, \sigma_z \) erfährt, die hieraus sich ergebenden Dehnungen:

\[
\begin{align*}
\text{in Richtung der } x\text{-Achse } \varepsilon_1 &= \alpha \left(\frac{\sigma_x \sigma_y + \sigma_z}{m} \right), \\
\text{in Richtung der } y\text{-Achse } \varepsilon_2 &= \alpha \left(\frac{\sigma_y \sigma_z + \sigma_x}{m} \right), \\
\text{in Richtung der } z\text{-Achse } \varepsilon_3 &= \alpha \left(\frac{\sigma_z \sigma_x + \sigma_y}{m} \right).
\end{align*}
\]

Hieraus folgt

\[
\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \alpha \left(\frac{\sigma_x + \sigma_y + \sigma_z - 2 \sigma_x + \sigma_y + \sigma_z}{m} \right),
\]

\[
\sigma_x + \sigma_y + \sigma_z = \frac{m}{m - 2} \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{\alpha} = \frac{m}{m - 2} \frac{\varepsilon_1}{\alpha},
\]

sofern

\[
\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \varepsilon. \quad \ldots \quad 2)
\]

Wird hierzu die aus der ersten der Gleichungen 4, § 7, abgeleitete Beziehung

\[
m \sigma_x - \sigma_y - \sigma_z = \frac{m \varepsilon_1}{\alpha}
\]

hinzugefügt, so ergibt sich

\[
m \sigma_x + \sigma_z = \frac{m}{m - 2} \frac{\varepsilon}{\alpha} + \frac{m \varepsilon_1}{\alpha},
\]

\[
\sigma_x = \frac{m}{1 + m} \frac{1}{\alpha} \left(\varepsilon_1 + \frac{\varepsilon}{m - 2} \right).
\]

Das gleiche Verfahren liefert

\[\sigma_y = \frac{m}{1 + m} \alpha \left(\epsilon_2 + \frac{e}{m - 2} \right), \]

\[\sigma_z = \frac{m}{1 + m} \alpha \left(\epsilon_3 + \frac{e}{m - 2} \right). \]

Hieraus findet sich bei Berücksichtigung der Gleichung 3, § 31,

\[\sigma_x = \frac{2}{\beta} \left(\epsilon_1 + \frac{e}{m - 2} \right) \]

\[\sigma_y = \frac{2}{\beta} \left(\epsilon_2 + \frac{e}{m - 2} \right) \]

\[\sigma_z = \frac{2}{\beta} \left(\epsilon_3 + \frac{e}{m - 2} \right) \]

Im vorliegenden Falle beträgt, da sich \(z \) um \(\zeta \) ändert, die tangentielle Dehnung \(\epsilon_3 \) im Punkte \(P \)

\[\epsilon_3 = \frac{2 \pi (z + \zeta) - 2 \pi z}{2 \pi z} = \frac{\zeta}{z}, \quad \ldots \ldots .4) \]

Für die radiale Dehnung \(\epsilon_3 \) liefert die Erwägung, daß die Strecke \(dz \) die Änderung \(d\zeta \) erfährt, den Ausdruck

\[\epsilon_3 = \frac{d\zeta}{dz}, \quad \ldots \ldots .5) \]

Hiermit wird aus den Gleichungen 3

\[\sigma_x = \frac{2}{\beta} \left(\epsilon_1 + \frac{\zeta}{z} + \frac{d\zeta}{dz} \right) \]

\[\sigma_y = \frac{2}{\beta} \left(\epsilon_2 + \frac{\zeta}{z} + \frac{d\zeta}{dz} \right) \]

\[\sigma_z = \frac{2}{\beta} \left(\frac{d\zeta}{dz} + \frac{\epsilon_1}{z} + \frac{d\zeta}{dz} \right). \]
Die Einsetzung des aus der ersten dieser Gleichungen folgenden Werten

\[\epsilon_1 = \frac{m - 2}{2(m - 1)} \beta \sigma_z \left(\frac{\xi}{z} + \frac{d \xi}{dz} \right) \]

in die beiden anderen führt zu

\[\sigma_y = \frac{2}{m - 1} \beta \left(\frac{m \xi}{z} + \frac{d \xi}{dz} \right) \left(\frac{\sigma_x}{m - 1} \right) \]

\[\sigma_z = \frac{2}{m - 1} \beta \left(\frac{\xi}{z} + m \frac{d \xi}{dz} \right) \left(\frac{\sigma_x}{m - 1} \right) \]

Hier ist unter Voraussetzung gleichmäßiger Verteilung der Achsialkraft \(\pi r_i^2 p_i - \pi r_a^2 p_a \) über den Zylinderquerschnitt \(\pi r_a^2 - \pi r_i^2 \), d. h.

\[\pi (r_a^2 - r_i^2) \sigma_x = \pi (p_i r_i^2 - p_a r_a^2), \]

die axiale Spannung

\[\sigma_x = \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} \]

als unveränderliche Größe anzusehen.

Die Einführung der Werte \(\sigma_y \) und \(\sigma_z \) aus den Gleichungen 6 in die Gleichung 1 ergibt

\[\frac{d^2 \xi}{dz^2} + \frac{d \xi}{dz} - \frac{\xi}{z} = 0, \]

oder

\[\frac{d^2 \xi}{dz^2} + \frac{d \left(\frac{\xi}{z} \right)}{dz} = 0. \]
Durch Integration

\[\frac{d\zeta}{dz} + \frac{\zeta}{z} = \text{konstant} = c_1. \]

Hieraus

\[z \frac{d\zeta}{dz} + \zeta = c_1 z, \]

oder

\[\frac{d(z \zeta)}{dz} = c_1 z, \]

und bei nochmaliger Integration

\[z \zeta = \frac{1}{2} c_1 z^2 + c_2. \]

Mit den hieraus sich ergebenden Werten

\[\frac{\zeta}{z} = \frac{c_1}{2} + \frac{c_2}{z^2}, \]

\[\frac{d\zeta}{dz} = \frac{c_1}{2} - \frac{c_2}{z^2} \]

liefern die beiden Gleichungen 6

\[\sigma_y = \frac{2}{m-1} \frac{1}{\beta} \left[\frac{c_1}{2} (m + 1) + \frac{c_2}{z^2} (m - 1) \right] + \frac{\sigma_z}{m-1} \]

\[\sigma_z = \frac{2}{m-1} \frac{1}{\beta} \left[\frac{c_1}{2} (m + 1) - \frac{c_2}{z^2} (m - 1) \right] + \frac{\sigma_z}{m-1} \]

Die zwei Konstanten \(c_1 \) und \(c_2 \) bestimmen sich aus den Bedingungen, daß sein muß:

für \(z = r_i \), \(\sigma_z = -p_i \),

- \(z = r_a \), \(\sigma_z = -p_a \),
\[p_i = \frac{2}{m-1} \frac{1}{\beta} \left[\frac{c_1}{2} (m+1) - \frac{c_2}{r_i^2} (m-1) \right] + \frac{\sigma_x}{m-1}, \]

\[p_a = \frac{2}{m-1} \frac{1}{\beta} \left[\frac{c_1}{2} (m+1) - \frac{c_2}{r_a^2} (m-1) \right] + \frac{\sigma_x}{m-1}, \]

woraus

\[c_1 = \frac{m-1}{m+1} \beta \left(\frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} - \frac{\sigma_x}{m-1} \right), \]

\[c_2 = \frac{p_i - p_a}{2} \beta \frac{r_a^2 r_i^2}{r_a^2 - r_i^2}. \]

Hiermit wird unter Beachtung der Gleichung 7

\[\sigma_y = \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} + (p_i - p_a) \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} \frac{1}{z^2} \]

\[\sigma_z = \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} - (p_i - p_a) \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} \frac{1}{z^2} \]

Die Dehnungen \(\varepsilon_1, \varepsilon_2 \) und \(\varepsilon_3 \) in den drei Hauptrichtungen ergeben sich aus den Gleichungen 4, § 7, nach Einführung der Werte \(\sigma_x \) (Gleichung 7), \(\sigma_y \) und \(\sigma_z \) (Gleichung 9) zu

\[\varepsilon_1 = \frac{m-2}{m} \alpha \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2}, \]

\[\varepsilon_2 = \frac{m-2}{m} \alpha \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} + \frac{m+1}{m} \alpha \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} (p_i - p_a) \frac{1}{z^2}, \]

\[\varepsilon_3 = \frac{m-2}{m} \alpha \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} - \frac{m+1}{m} \alpha \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} (p_i - p_a) \frac{1}{z^2}. \]
2. Innerer Überdruck p_i ($p_a = 0$).

Die Gleichungen 10 ergeben unter Beachtung des in § 48, Ziff. 1 Erörterten die Materialanstrengung im Punkte P und zwar

\[
\frac{\varepsilon_1}{\alpha} = \frac{m - 2}{m} \frac{r_i^2}{r_a^2 - r_i^2} p_i = 0,4 \frac{r_i^2}{r_a^2 - r_i^2} p_i,
\]

in Richtung der Zylinderachse

\[
\frac{\varepsilon_2}{\alpha} = \frac{m - 2}{m} \frac{r_i^2}{r_a^2 - r_i^2} p_i + \frac{m + 1}{m} \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} p_i \frac{1}{z^2},
\]

in Richtung der Tangente (des Umfanges)

\[
= 0,4 \frac{r_i^2}{r_a^2 - r_i^2} p_i + 1,3 \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} p_i \frac{1}{z^2},
\]

in Richtung des Halbmessers

\[
\frac{\varepsilon_3}{\alpha} = \frac{m - 2}{m} \frac{r_i^2}{r_a^2 - r_i^2} p_i - \frac{m + 1}{m} \frac{r_a^2 r_i^2}{r_a^2 - r_i^2} p_i \frac{1}{z^2},
\]

sofern noch jeweils $m = \frac{10}{3}$ gesetzt wird.

Die Zuganstrengung $\frac{\varepsilon_1}{\alpha}$ in Richtung der Achse tritt vollständig hinter die Zuginanspruchnahme $\frac{\varepsilon_2}{\alpha}$, welche im Sinne des Umfanges statthalt, zurück, so daß sie nicht weiter in Betracht gezogen zu werden braucht. $\frac{\varepsilon_2}{\alpha}$ und $\frac{\varepsilon_3}{\alpha}$ erlangen die größten Werte für $z = r_i$, d. h. an der Innenfläche des Hohlzylinders. Somit wird mit k_i als zulässiger Zug- und k als zulässiger Druckanstrengung.
\[
\text{max} \left(\frac{\varepsilon_2}{\alpha} \right) = \frac{(m + 1) r^2_a + (m - 2) r^2_i}{m(r^2_a - r^2_i)} \quad p_i = \frac{1,3 r^2_a + 0,4 r^2_i}{r^2_a - r^2_i} \quad p_i \leq k, \tag{12}
\]
\[
\text{max} \left(-\frac{\varepsilon_3}{\alpha} \right) = \frac{(m + 1) r^2_a - (m - 2) r^2_i}{m(r^2_a - r^2_i)} \quad p_i = \frac{1,3 r^2_a - 0,4 r^2_i}{r^2_a - r^2_i} \quad p_i \leq k.
\]

Die Zuganstrengung \(\max \left(\frac{\varepsilon_2}{\alpha} \right) \) in Richtung des Umfanges, d. i. in tangentialer Richtung, ist der größere, also der bestimmende Wert. Hiernach findet sich als maßgebende Beziehung

\[
k_z \geq \frac{m + 1}{m} r^2_a + \frac{m - 2}{m} r^2_i \quad p_i = \frac{1,3 r^2_a + 0,4 r^2_i}{r^2_a - r^2_i} \quad p_i, \tag{13}
\]

oder

\[
r_a \geq r_i \left(\frac{k_z + \left(1 - \frac{2}{m} \right) p_i}{k_z - \left(1 + \frac{1}{m} \right) p_i} \right) = r_i \left(\frac{k_z + 0,4 p_i}{k_z - 1,3 p_i} \right). \tag{14}
\]

1) Zur Entwicklung dieser Beziehung in der Zeitschrift des Vereines deutscher Ingenieure 1880, S. 283 u. f. war Verfasser durch die Beobachtung veranlaßt worden, daß Schläuche, welche zum Zwecke der Prüfung innerem Überdruck ausgesetzt wurden, sich verlängern, während die Grundlage der von Grashof in seiner Theorie der Elastizität und Festigkeit 1878, S. 312, für die Berechnung von Hohlzylindern entwickelten Gleichung

\[
r_a = r_i \sqrt{\frac{m k_z + (m - 1) p_i}{m k_z - (m + 1) p_i}}, \tag{15}
\]

und mit \(m = \frac{10}{3} \)

\[
r_a = r_i \sqrt{\frac{k_z + 0,7 p_i}{k_z - 1,3 p_i}},
\]

welche dem Verfasser bis dahin als die zutreffendste erschienen war, infolge der Vernachlässigung der Achsialkraft \(\pi r^2_a p_i \) nicht eine Verlängerung, sondern eine Verkürzung des Hohlzylinders ergibt, indem für die Dehnung \(\varepsilon_a \) in Richtung der Zylinderachse ein negativer Wert gefunden wird. (S. am angegebenen Ort in No. 199 den Ausdruck für \(E \varepsilon_a \), vergl. Zeitschrift des Vereines deutscher Ingenieure 1880, S. 288 und 290.)
Für \(1,3 \, p_i = k_z \) wird \(r_a = \infty \), gleichgültig, wie klein auch der innere Durchmesser sein mag, sofern er nur größer als Null ist. Da nun der zulässigen Anstrengung \(k_z \) für jedes Material eine unüberschreitbare Grenze gezogen ist, so folgt hieraus, daß nur solche Verhältnisse möglich sind, für welche

\[
p_i < \frac{k_z}{1,3},
\]

oder allgemein

\[
p_i < \frac{m + 1}{m} k_z.
\]

(Vergl. hierzu Fußbemerkung 2, S. 557.)

Daß es durch fortgesetzte Vergrößerung der Wandstärke nicht möglich sein soll, die Flüssigkeitspressung über eine gewisse Höhe hinaus zu steigern, kann für den ersten Augenblick überraschen, erklärt sich jedoch durch die Ungleichmäßigkeit der Verteilung der Anstrengung über den Wandungsquerschnitt.

Denken wir uns beispielsweise einen Hohlzylinder aus Gußstahl mit den Durchmessern

\[2 \, r_i = 80 \, \text{mm}, \quad 2 \, r_a = 200 \, \text{mm},\]

der Wandstärke

\[r_a - r_i = 100 - 40 = 60 \, \text{mm}\]

Die Beziehung 15 wurde in der Form

\[\delta = r_a - r_i = r_i \left[-1 + \sqrt{\frac{m \, k_z + (m - 1) \, p_i}{m \, k_z - (m + 1) \, p_i}} \right]\]

auch als Winklersche Gleichung bezeichnet (v. Reiche, Die Maschinenfabrikation 1876, S. 37, wobei mit \(m = 3 \) gesetzt ist,

\[\delta = r_i \left[\frac{3 \, k_z + 2 \, p_i}{3 \, k_z - 4 \, p_i} - r_i \right],\]

u. a.). Verfasser, welcher gelegentlich der Abfassung dieses Buches (1889) die Winklersche Arbeit über zylindrische Gefäße im Zivilingenieur 1860 erstmals durchgesehen hat, fand bei dieser Gelegenheit, daß Winkler bereits damals nicht bloß die Beziehung 15 aufgestellt hatte, sondern auch eine weitere Gleichung, welche die erwähnte Achsalkraft berücksichtigte (S. 348 und 349 dasselbst), und die sich von Gleichung 14 nur durch den mit 4 etwas zu groß gewählten Wert von \(m \) unterscheidet.
hergestellt und einem inneren Überdruck von 1200 kg auf das Quadratzentimeter ausgesetzt. Dann ergibt sich nach der zweiten der Gleichungen 11 die tangentielle Anstrenung (Zug)\(^1\)

a) an der Innenfläche, d. h. für \(z = 4\) cm,
\[
0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{4^2} \approx 1950 \text{ kg};
\]

b) in der Mitte, d. h. für \(z = 7\) cm,
\[
0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{7^2} \approx 700 \text{ kg};
\]

c) an der Außenfläche, d. h. für \(z = 10\) cm,
\[
0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{10^2} \approx 390 \text{ kg}.
\]

In Fig. 4 ist der Verlauf der Inanspruchnahme dargestellt. Die Anstrenung beträgt hiernach außen nur den fünften Teil derjenigen an der Innenfläche. Da die letztere maßgebend ist, so wird das nach außen gelegene Material sehr schlecht ausgenützt\(^2\).

1) Die radiale Anstrenung (Druck) beträgt an der Innenfläche nach der zweiten der Gleichungen 12
\[
\max \left(\frac{\varepsilon _8}{\alpha} \right) = \frac{1,3 \cdot 10^2 - 0,4^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 = 1766 \text{ kg},
\]
und die axiale Anstrenung (Zug) nach der ersten der 3 Gleichungen 11
\[
\frac{\varepsilon _1}{\alpha} = 0,4 \frac{4^2}{10^2 - 4^2} \cdot 1200 = 91 \text{ kg}.
\]

2) Wenn es sich um ein Material handelt mit derart veränderlichem Dehnungskoeffizienten, daß derselbe bei wachsender Spannung zunimmt, so daß also der Stoff um so nachgiebiger ist, je stärker er angestrengt wird, wie dies z. B. bei Gußeisen zutrifft, so zeigt sich diese Ungleichmäßigkeit nicht in dem hohen Grade: an der Innenfläche fällt die Anstrenung geringer, an der Außenfläche größer aus, als die vorstehenden Gleichungen, welche Unveränderlichkeit des Dehnungskoeffizienten und des Wertes \(m\) zur Voraussetzung haben, erwarten.
Vergrößern wir die Wandstärke fortgesetzt, bis schließlich in der Gleichung

\[k_z = \frac{1,3 r_a^2 + 0,4 r_i^2}{r_a^2 - r_i^2} p_i = \frac{1,3 + 0,4 \left(\frac{r_i}{r_a} \right)^2}{1 - \left(\frac{r_i}{r_a} \right)^2} p_i \]

Null gesetzt werden darf, so ist \(k_z = 1,3 p_i \), unter welche Anstrengung also nicht zu gelangen ist, wie oben bereits festgestellt.

lassen. Bei Gußeisen kommt andererseits wieder der in § 22, Ziff. 3, festgestellte Einfluß der Gußhaut hinzu. Ist diese, geringere Nachgiebigkeit besitzende Schicht an der Innenfläche vorhanden, so muß sie die Festigkeit vermindern und wirken. Durch Bearbeitung der Innenfläche — vorausgesetzt, daß die Rücksicht auf das Dichthalten gegenüber der Flüssigkeit das Ausbohren gestattet — würde die Widerstandsfähigkeit unter sonst gleichen Verhältnissen erhöht werden können. (Vergl. in § 56 das unter Ziff. 1 b) und c) S. 519 sowie 520 Gesagte.)

Der Einfluß der etwaigen Veränderlichkeit von \(m \) ist von keiner großen Bedeutung.
§ 58. Hohlzylinder.

Die erkannte Unvollständigkeit der Ausnützung der Widerstandsfähigkeit des Materials, welche um so bedeutender ist, je größer die Wandstärke, hat zur Konstruktion von zusammengesetzten Hohlzylindern (Ringgeschützen u. s. w.) geführt, deren Wesen sich aus folgendem ergibt.

Wir denken uns den Hohlzylinder des soeben behandelten Beispiels aus zwei Hohlzylindern bestehend:

- einem inneren, für welchen \(r_i = 40 \text{ mm}, \quad r_a = 70 \text{ mm}, \)
- äußeren, \(r_i = 70 \quad r_a = 100 \)

Der äußere Zylinder sei auf den inneren (warm oder in anderer Weise) so aufgezogen, daß dieser zusammengepreßt wird; infolgedessen tritt bei dem inneren Zylinder eine nach innen wachsende Druckspannung auf. Wenn nun jetzt die gepreßte Flüssigkeit (Arbeitsflüssigkeit) den inneren Zylinder belastet, so fällt hier die Zuganstrengung um den Betrag geringer aus, welcher der Druckanstrengung entspricht, die durch das Aufziehen des äußeren Zylinders mit Pressung wachgerufen worden war. Dagegen ergibt sich die Zuganstrengung des äußeren Zylinders um denjenigen Betrag größer, welcher von dem Aufziehen auf den inneren herrührte. Zweckmäßigerweise wird man bei solchen, aus mehreren Hohlzylindern zusammengesetzten Zylindern dahin streben müssen, daß die Spannungen an den Innenflächen der einzelnen Zylinder unter Einwirkung der Flüssigkeitspressung gleich groß ausfallen.

Für im Verhältnis zum Halbmesser geringe Wandstärke \(s = r_a - r_i \) kann mit genügender Annäherung gleichmäßige Verteilung der Spannungen über den Wandungsquerschnitt angenommen werden. Dies gibt für den \(l \) langen Hohlzylinder

\[
2 r_i l p_i \leq 2 s l k_z,
\]

woraus

\[
k_z \geq \frac{r_i}{s} p_i \quad \text{oder} \quad s \geq \frac{r_i p_i}{k_z} \ldots \ldots 16)
\]

Aus der allgemeinen Gleichung 14 läßt sich diese Beziehung in folgender Weise ableiten.
Mit \(m = \infty \) (d. h. die Zusammenziehung, welche ein in Rich-

tung seiner Achse gezogener Stab senkrecht zu dieser erfährt, wird

vernachlässigt) folgt zunächst

\[
r_a = r_i \sqrt{\frac{k_z + p_i}{k_z - p_i}} = r_i \sqrt{1 + 2 \frac{p_i}{k_z - p_i}}.
\]

Unter Beachtung, daß bei geringer Wandstärke \(p_i \) nur einen
kleinen Bruchteil von \(k_z \) bildet,

\[
r_a = \sim r_i \sqrt{1 + 2 \frac{p_i}{k_z}} = \sim r_i \left(1 + \frac{p_i}{k_z} \right),
\]

\[
r_a - r_i = s = r_i \frac{p_i}{k_z},
\]

wie oben unmittelbar entwickelt wurde.

Die Spannung \(\sigma \), welche in dem senkrecht zur Achse ge-

legenen Querschnitt

\[
\pi (r_a^2 - r_i^2)
\]

des Hohlzylinders eintritt, findet sich aus

\[
\pi r_i^2 p_i = \pi (r_a^2 - r_i^2) \sigma
\]

zu

\[
\sigma = p_i \frac{r_i^2}{r_a^2 - r_i^2} = p_i \frac{r_i}{r_a - r_i} \frac{r_i}{r_i (r_a - r_i)} = \sim \frac{1}{2} \frac{p_i}{s} \frac{r_i}{s},
\]

d. h. halb so groß als die Anstrengung (nach Gleichung 16)
in Richtung des Umfanges.

3. Äußere Überdruck \(p_a (p_i = 0) \).

Wenn Flachdrücken oder Einbeulen der Wandung und bei

großer Länge außerdem die in § 23 besprochene Knickung nicht
zu erwarten steht, sind die Anstrengungen nach den Gleichungen 10
mit \(p_i = 0 \) zu berechnen. Dieselben gehen dann über in
\[\varepsilon_1 = - \frac{m - 2}{m} \alpha \frac{r_a^2}{r_a^2 - r_i^2} P_a, \]
\[\varepsilon_2 = - \frac{m - 2}{m} \alpha \frac{r_a^2}{r_a^2 - r_i^2} P_a - \frac{m + 1}{m} \alpha \frac{r_a^2}{r_a^2 - r_i^2} P_a \frac{1}{z^2}, \]
\[\varepsilon_3 = - \frac{m - 2}{m} \alpha \frac{r_a^2}{r_a^2 - r_i^2} P_a + \frac{m + 1}{m} \alpha \frac{r_a^2}{r_a^2 - r_i^2} P_a \frac{1}{z^2}. \]

Den größten Wert erlangen die Anstrengungen \(\frac{\varepsilon_2}{\alpha} \) und \(\frac{\varepsilon_3}{\alpha} \) — die Inanspruchnahme \(\frac{\varepsilon_1}{\alpha} \) kommt als wesentlich kleiner wie die gleichzeitige Anstrengung \(\frac{\varepsilon_2}{\alpha} \) nicht weiter in Betracht — auch hier wieder für das kleinste \(z \), d. h. für die Innenfläche, und zwar

in Richtung der Tangente (des Umfanges)

\[
\max \left(- \frac{\varepsilon_2}{\alpha} \right) = \frac{2m - 1}{m} \frac{r_a^2}{r_a^2 - r_i^2} P_a = 1,7 \frac{r_a^2}{r_a^2 - r_i^2} P_a,
\]

in Richtung des Halbmessers

\[
\max \left(\frac{\varepsilon_3}{\alpha} \right) = \frac{3}{m} \frac{r_a^2}{r_a^2 - r_i^2} P_a = 0,9 \frac{r_a^2}{r_a^2 - r_i^2} P_a,
\]

sofern noch \(m = \frac{10}{3} \) eingeführt wird. Hiernach

\[
k \geq 1,7 \frac{r_a^2}{r_a^2 - r_i^2} P_a \text{ oder } r_a = \sqrt[1 - 1,7 \frac{P_a}{k}} \frac{r_i}{r_a},
\]

\[
k_z \geq 0,9 \frac{r_a^2}{r_a^2 - r_i^2} P_a \text{ oder } r_a = \sqrt[1 - 0,9 \frac{P_a}{k_z}} \frac{r_i}{r_a}.
\]

Auch hier gilt die zur Gleichung 14 gemachte Bemerkung, daß nur solche Verhältnisse möglich sind, für welche

\[P_a < \frac{k}{1,7} \text{ bzw. } P_a < \frac{k_z}{0,9}. \]
Für verhältnismäßig geringe Wandstärke \(s = r_a - r_i \) findet sich unter den oben ausgesprochenen Voraussetzungen und auf dem gleichen Wege, welcher zur Beziehung 16 führte,

\[
k \geq p_a \frac{r_a}{s} \quad \text{oder} \quad s \geq r_a \frac{p_a}{k} \quad \ldots \quad 19)
\]

Bei den Entwicklungen dieses Paragraphen blieb der etwaige, die Festigkeit des Zylindermantels unterstützende Einfluß der Zylinderböden (und zutreffendensfalls der Querrähte) unberücksichtigt. Je kürzer der Zylinder im Vergleich zum Durchmesser ist, um so bedeutender wird unter sonst gleichen Verhältnissen dieser Einfluß sein; je größer die Länge, um so mehr wird er verschwinden. In der Mehrzahl der Fälle tritt er in den Hintergrund; wo dies nicht zutrifft, kann seine Berücksichtigung schätzungsweise unter Beachtung der Verhältnisse des gerade vorliegenden Sonderfalles dadurch erfolgen, daß die zulässige Anstrengung des Materials entsprechend höher in die Rechnung eingeführt wird.

Wenn der Hohlzylinder nicht aus dem Ganzen besteht, sondern aus einzelnen Teilen hergestellt wurde, die durch Nietung oder in anderer Weise verbunden sind, so wird die Widerstandsfähigkeit der Verbindung in Betracht zu ziehen sein.

Die im vorstehenden gegebene Berechnungsweise von Zylinderwandstärken setzte voraus, daß die Flüssigkeitspressung über den ganzen Umfang gleich groß ist. Die Wirklichkeit kann unter Umständen recht erheblich hiervon abweichen, so z. B. bei sehr weiten wagerechten Rohrleitungen für Wasser, in denen der Druck von der Sohle nach dem Scheitel hin verhältnismäßig bedeutend abnimmt, und die nur an der tiefsten Stelle gelagert sind u. s. w. Solche Fälle bedürfen besonderer Behandlung 1).

Die Ermittlung der Wandstärken solcher Hohlzylinder, bei welchen unter Einwirkung des äußeren Überdruckes ein Flach-
drücken (Einknicken, Einbeulen) der Wandung zu befürchten steht, gehört bei dem derzeitigen Stand dieser Aufgabe sowie in Anbetracht der besonderen Einflüsse, welche dabei zu berücksichtigen sind, an diejenigen Stellen, wo die betreffenden Gegenstände, zu denen solche Hohlzylinder gehören, behandelt werden 1).

§ 59. Hohlkugel.

Mit den Bezeichnungen
- \(r_i \) der innere Halbmesser der Hohlkugel,
- \(r_a \) äußere
- \(k_z \) die zulässige Zuganstrengung,
- \(k \) Druckanstrengung
finden sich auf demselben Wege, welcher in § 58 eingeschlagen worden ist, und für \(m = \frac{10}{3} \) die folgenden Beziehungen.

1. Innerer Überdruck \(p_i \).

Die größte Anstrengung tritt auch hier an der Innenfläche ein:

\[
\begin{align*}
\frac{m + 1}{2 m} \frac{r_a^3}{r_a^3 - r_i^3} &+ \frac{m - 2}{m} \frac{r_i^3}{r_a^3 - r_i^3} p_i = \frac{0.65 r_a^3 + 0.4 r_i^3}{r_a^3 - r_i^3} p_i, \\
\frac{m + 1}{m} \frac{r_a^3}{r_a^3 - r_i^3} &+ \frac{m - 2}{m} \frac{r_i^3}{r_a^3 - r_i^3} p_i = \frac{1.3 r_a^3 - 0.4 r_i^3}{r_a^3 - r_i^3} p_i.
\end{align*}
\]

Naturngemäß sind in demselben nur solche Verhältnisse möglich, für welche sich endliche Werte von \(r_a \) ergeben.

Für im Verhältnis zum Halbmesser geringe Wandstärke \(s = r_a - r_i \) ergibt die aus
\[
\pi r_i^2 p_i \leq k_z \frac{2 \pi r_i s}{2}
\]
folgende Beziehung
\[
k_z \geq \frac{1}{2} \frac{r_i}{p_i} \quad \text{oder} \quad s = \frac{1}{2} \frac{r_i}{p_i} \frac{p_i}{k_z} \quad \ldots \quad 2)
\]
die Anstrengung bezw. Wandstärke genügend genau.

2. Äußerer Überdruck \(p_a (p_i = 0) \).

Sofern Einknicken (Einbeulen) der Wandung nicht zu befürchten steht\(^1\), gilt für die Anstrengung, die auch hier wieder an der Innenfläche den Größtwert erreicht,

in Richtung der Tangente (des Umfanges)
\[
k \geq \frac{3 (m - 1)}{2 m} \frac{r_a^3}{r_a^3 - r_i^3} p_a = 1,05 \frac{r_a^3}{r_a^3 - r_i^3} p_a,
\]
in Richtung des Halbmessers
\[
k_z \geq \frac{3}{m} \frac{r_a^3}{r_a^3 - r_i^3} p_a = 0,9 \frac{r_a^3}{r_a^3 - r_i^3} p_a.
\]

Für verhältnismäßig geringe Wandstärke wie oben
\[
k \geq \frac{1}{2} \frac{r_a}{p_a} \frac{p_a}{s} \quad \text{oder} \quad s = \frac{1}{2} \frac{r_a}{p_a} \frac{p_a}{k} \quad \ldots \quad 4)
\]

Die zwei letzten Sätze von § 58 sind auch sinngemäß auf die Hohlkugel zu übertragen und demgemäß zu beachten.

\(^1\) Über die Berechnung von kugelförmigen Wandungen, bei denen Einbeulen zu befürchten steht, s. des Verfassers Arbeit „Die Widerstandsfaßigkeit kugelförmiger Wandungen gegenüber äußerem Überdruck“ in der Zeitschrift des Vereines deutscher Ingenieure 1902, S. 333 u. f. oder Heft 6 der „Versuche über die Widerstandsfaßigkeit von Kesselwandungen“.