Zweiter Abschnitt.

Die einfachen Fälle der Beanspruchung gerader stabförmiger Körper durch Schubspannungen (Schiebungen).

Einleitung.

§ 28. Schiebung.

Die im vorhergehenden (§ 1 bis § 27) betrachteten Änderungen der Form waren Änderungen der Länge (vergl. die §§ 1, 6, 11 u. s. f.). Damit sind die auftretenden Formänderungen jedoch noch nicht erschöpft, wie aus folgender Betrachtung erhebt.

Wir denken uns in dem von äußeren Kräften noch nicht ergriffenen Körper, welcher der Betrachtung unterworfen werden soll, einen kleinen Vierflächner (Fig. 1). Begrenzt von den drei in den Kanten \(OA, OB, \) und \(OC \) sich rechtwinklig schneidenden Ebenen \(AOB, BOC, COA \) und der weiteren Ebene \(ABC \), erscheint derselbe bestimmt durch die drei Kantenlängen \(OA, OB \) und \(OC \) sowie durch die Kantenwinkel, welche die Ebenen der körperlichen Ecke miteinander bilden, nämlich

\[
\angle BOC \text{ (an der Kante } OA), \\
\angle COA \text{ (} OB), \\
\angle AOB \text{ (} OC).
\]

Wenn nun jetzt auf den Körper äußere Kräfte, die sich an ihm das Gleichgewicht halten mögen, einwirken, so erleidet er in allen seinen Teilen Formänderungen. Hierbei werden auch die den Vierflächner bestimmenden Größen sich ändern: die Kanten werden eine Änderung ihrer Länge, die Kantenwinkel eine Änderung ihrer Größe erfahren.
Die Möglichkeit, daß die Ebenen AOB, BOC, COA und ABC in gekrümme Flächen übergehen können, darf unter der Voraussetzung, daß der Vierflächner unendlich klein gedacht wird, unbereitschtigt bleiben, weil ein unendlich kleines Flächenelement — solche liegen dann in den vier Begrenzungsflächen vor — immer als eben angesehen werden kann, und weil die Änderungen der Lage der vier Flächenelemente bereits durch die Änderungen der Kanten und der Winkel bestimmt sind.

Hiernach treten zu den im früheren allein betrachteten Änderungen der Länge noch Winkeländerungen hinzu.

Zur Klarstellung des Wesens dieser Änderungen denken wir uns einen Würfel $OADBCGFE$ (Fig. 2) von einer nach OA gerichteten, in der oberen Ebene $CGFE$ liegenden und über dieselbe gleichmäßig verteilten Kraft ergriffen und unten (in der Ebene $OADB$) festgehalten. Dann wird sich die obere Begrenzungsebene $CGFE$ nach $C_1G_1F_1E_1$ verschieben, der rechte Winkel $EBD = \triangle COA$ wird in den spitzen Winkel $E_1BD = \triangle C_1OA$ übergehen, sich also um

$$\triangle EBE_1 = \triangle COC_1 = \gamma$$

ändern. Diese Winkeländerung ist bestimmt durch

$$\tan \gamma = \frac{EE_1}{BE} = \frac{CC_1}{OC},$$

wofür unter Voraussetzung, daß es sich nur um kleine Änderungen handelt, gesetzt werden darf

$$\gamma = \frac{EE_1}{BE} = \frac{CC_1}{OC} = \frac{FF_1}{DF} = \frac{GG_1}{AG}.$$

Bach, Elastizität. 5. Aufl. 19
Dieser Quotient ist aber auch gleich der Verschiebung, welche unter den gleichen Verhältnissen eine in der Richtung OC um 1 von der Kante BO abstehende Ebene (abstehendes Flächenelement, abstehender Punkt) erfahren haben würde. Aus diesem Grunde wird die Änderung γ des ursprünglich rechten Winkels auch als verhältnismäßige (spezifische) Verschiebung und kurz als Schiebung oder Gleitung bezeichnet.

Zur weiteren Klärung der Schiebung γ werde noch die folgende Betrachtung angestellt.

Zwei ursprünglich unter rechtem Winkel sich schneidende Ebenen OX und OZ, Fig. 3, gelangen durch die Formänderung

![Diagram](image)

in die Lagen OA₁ und OC₁. Der ursprünglich rechte Winkel XOZ hat sich hierbei geändert um die Winkel XOA₁ und ZOC₁, deren Tangenten betragen

\[
\frac{AA₁}{OA}, \text{ bzw. } \frac{CC₁}{OC},
\]

wenn A₁A und CC₁ senkrecht zu OX bzw. OZ stehen. Da es sich nur um sehr kleine Winkeländerungen handelt, so darf die Gesamtänderung γ gesetzt werden

\[
γ = \frac{AA₁}{OA} + \frac{CC₁}{OC}.
\]

Bei dem betrachteten Vorgang hat sich der ursprünglich in der OX-Ebene gelegene Punkt A₁ gegen die jetzt nach OC₁ gekommene OZ-Ebene verschoben um OA₂, sofern A₁A₂ das von

A_1 auf OC_1 gefällte Lot ist, und der ursprünglich in C der OZ-Ebene gelegene Punkt C_1 gegen die jetzt nach OA_1 gelangte OX-Ebene um OC_2, wenn $C_1C_2 \perp OA_1$. Hiernach ergibt sich für die Schiebung

$$
\gamma = \infty \frac{OA_2}{A_1A_2} = \frac{OC_2}{C_1C_2} = \frac{AA_1}{OA} + \frac{OC_1}{OC}.
$$

Das Vorstehende zusammenfassend, finden wir, daß mit Schiebung bezeichnet ist:

die Änderung des rechten Winkels (in Bogenmaß) zweier ursprünglich senkrecht zu einander stehenden Flächenelemente,

oder auch
die Strecke, um welche sich zwei um 1 voneinander abstehende Flächenelemente gegeneinander verschieben.

Der in § 28 der Betrachtung unterstellte sehr kleine Würfel $OABCGFE$ gehöre dem Inneren eines festen Körpers an und nehme unter Einwirkung der äußeren Kräfte, von welchen dieser ergriffen wird, die Gestalt $OADBCGFE$ an. Die innere Kraft, mit welcher aus diesem Anlaß die an den Würfel anschließenden Körperteile in der Ebene $CGFE$ auf denselben einwirken und dadurch die Verschiebung der letzteren nach C_GF_E herbeiführen, heißt, bezogen auf die Flächeneinheit, Schubspannung. Sie unterscheidet sich von der in § 1 besprochenen Spannung dadurch, daß ihre Richtung in das Flächenelement hineinfällt, auf welches sie wirkt, während die im früheren betrachteten Spannungen senkrecht hierzu standen und deshalb zum Unterschiede als Normalspannungen (Zug- oder Druckspannungen) bezeichnet werden.

Die Schubspannung, die zur Schiebung γ (§ 28) gehört, werde mit τ bezeichnet.

Die Schiebung, welche sich für die Schubspannung gleich der Krafteinheit, d. i. für das Kilogramm ergibt, soll Schubkoeffizient genannt und mit β bezeichnet werden. Sie beträgt

19*
Einleitung.

\[\beta = \frac{\gamma}{\iota} \quad . \quad . \quad . \quad . \quad . \quad . \quad 1 \]

Der Schubkoeffizient ist demnach derjenige Winkel (in Bogenmaß ausgedrückt), um welchen der rechte Winkel zweier ursprünglich senkrecht zueinander stehender Flächenelemente unter Einwirkung der Schubspannung von 1 Kilogramm sich ändert, oder kurz: die Änderung des rechten Winkels für das Kilogramm Schubspannung, oder auch
diejenige Strecke, um welche sich zwei um 1 von-einander abstehende Flächenelemente unter Ein-wirkung der Schubspannung von 1 Kilogramm gegeneinander verschieben.

Diese Begriffsbestimmung liefert unmittelbar die Schiebung als Produkt aus Schubspannung und Schubkoeffizient, d. h.

\[\gamma = \beta \iota, \quad . \quad . \quad . \quad . \quad . \quad . \quad 2 \]

wonach der Schubkoeffizient auch als diejenige Zahl erklärt werden kann, mit welcher die Schubspannung zu multiplizieren ist, um die Schiebung zu erhalten.

Die Schubspannung ergibt sich als der Quotient: Schiebung durch Schubkoeffizient, d. i.

\[\iota = \frac{\gamma}{\beta} \quad . \quad . \quad . \quad . \quad . \quad . \quad 3 \]

Der reziproke Wert von \(\beta \) wird als Schubelastizitätsmodul bezeichnet.

Der Vergleich mit § 2 läßt erkennen, daß zwischen Schiebung, Schubspannung und dem Schubkoeffizienten genau dieselben Beziehungen bestehen wie zwischen Dehnung, Normalspannung und dem Dehnungskoeffizienten.

Die vorstehenden Gleichungen 1 bis 3 setzen voraus, daß \(\beta \) innerhalb eines gewissen Spannungsgebietes konstant ist, ganz wie dies die Gleichungen 1 bis 4, § 2, hinsichtlich \(\alpha \) tun. Im allgemeinen wird diese Voraussetzung wohl ebensowenig zutreffen, wie dies bei \(\alpha \) der Fall ist. Doch liegen dahingehende Versuche
§ 30. Paarweises Auftreten der Schubspannungen.

Wir denken uns aus dem betrachteten und von äußeren Kräften ergriffenen Körper ein unendlich kleines Parallelepiped $OADBCGFE$, Fig. 1, dessen Kanten

$$\overline{OA} = a, \quad \overline{OB} = b, \quad \overline{OC} = c$$

sind, herausgeschnitten und die Kräfte eingetragen, mit welchen die an dasselbe anschließenden Körpermassen in den Schnittflächen auf den Würfel einwirken. Dabei sei zunächst angenommen, daß nur Schubspannungen vorhanden sind, und zwar treten auf:

1. in der Begrenzungsfläche $OADB$ von der Größe ab die Schubspannung τ_1, also die Kraft $\tau_1. ab$;
2. in der hierzu parallelen Fläche $CGFE$ von dem Inhalte ab die Schubspannung τ_1', also die Kraft $\tau_1'. ab$; da $CGFE$ unendlich nahe an $OADB$ liegt, so kann sich τ_1' nur um eine unendlich kleine Größe, die mit A_1 bezeichnet sein mag, von τ_1 unterscheiden, d. i. $\tau_1' = \tau_1 + A_1$;
3. in der Begrenzungsfläche $OBEC$ von der Größe bc die Schubspannung τ_2, demnach die Kraft $\tau_2. bc$;
4. in der hierzu parallelen Fläche $ADFG$ von dem Inhalte bc die Schubspannung τ_2', demnach die Kraft $\tau_2'. bc$; da beide Flächen unendlich nahe beieinander gelegen sind, so kann sich τ_2' nur um eine unendlich kleine Größe A_2 von τ_2 unterscheiden, d. i. $\tau_2' = \tau_2 + A_2$.
Soll Gleichgewicht bestehen, so muß u. a. auch die Summe der Momente in bezug auf die Achse YY, welche durch den Schwerpunkt des Parallelepipeds geht und mit der Kante OB gleich gerichtet ist, Null sein, d. h. unter Bezugnahme auf Fig. 2:

$$
\tau_{1}ab \cdot \frac{c}{2} - \tau_{3}c c \cdot \frac{a}{2} + \tau_{3}b c \cdot \frac{c}{2} - \tau_{3}b c \cdot \frac{a}{2} = 0,
$$

$$
\tau_{1}abc + \frac{1}{2} A_{1}abc - \tau_{3}abc - \frac{1}{2} A_{2}abc = 0.
$$

Hieraus unter Vernachlässigung der unendlich kleinen Größen A_{1} und A_{2} gegenüber den endlichen Größen r_{1} und r_{2}

$$
\tau_{1} - \tau_{2} = 0,
$$

$$
\tau_{1} = \tau_{2}, \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1)
$$

d. h. die beiden senkrecht zur Kante $OB = b$ stehenden Schubspannungen τ_{1} und τ_{2} sind einander gleich. Ist die eine vorhanden, so muß es auch die andere sein; sie treten also paarweise auf.

Zu diesem Ergebnis gelangten wir unter der Voraussetzung, daß lediglich Schubspannungen auf den Würfel einwirkten, und zwar nur in den vier Ebenen OAB, $CGFE$, OEC, und $ADFG$ des Körperelementes, Fig. 1.

Im allgemeinen werden die Körperteile, welche das Parallel-epiped umgeben, auf dasselbe in den sechs Begrenzungsfächen je mit einer Normalspannung und einer Schubspannung einwirken. Außerdem können noch Massenkräfte (Schwere, Trägheitsvermögen) ihren Einfluß äußern.
Was zunächst die Normalspannungen anbelangt, so erkennen wir, daß dieselben für die oben aufgestellte Momentengleichung nicht in Betracht kommen: die Normalspannungen in den Begrenzungsfächern $OADB$, $CGFE$, $OBEC$ und $ADFG$ liefern je eine Kraft, welche die Momentenachse YY senkrecht schneidet, also ein Moment gleich Null gibt; die Normalspannungen in den Begrenzungsfächern $OAGC$ und $BDFE$ ergeben in die Momentenachse fallende Kräfte, sind also einflußlos. Die etwaigen Massenkräfte greifen im Schwerpunkte des Würfels an, gehen demnach durch die Achse, liefern also ein Moment gleich Null.

Von den Schubspannungen entfallen die in den Flächen $OAGC$ und $BDFE$ wirkenden ohne weiteres, da die ihnen entsprechenden Kräfte die Achse YY schneiden. Hiernach verbleiben noch die Schubspannungen in den vier Flächen $OADB$, $CGFE$, $OBEC$ und $ADFG$.

Wir zerlegen jede derselben nach den Richtungen der Kanten in zwei Komponenten. Momentgebend treten hiervon nur auf die senkrecht zu den Kanten OB und GF wirkenden Spannungen, d. s. τ_1, τ_2, τ_1' und τ_2'. Für diese aber fanden wir den oben ausgesprochenen Satz. Derselbe gilt demnach allgemein, gleichgültig, welche Formänderung das Körperelement unter Einwirkung von Normalspannungen, Schubspannungen und Massenkräften erfährt: immer sind für zwei rechtwinklig sich schneidende Ebenen die senkrecht zur Durchschnittslinie gerichteten Komponenten der Schubspannungen einander gleich, oder auch mit Rücksicht darauf, daß diese Durchschnittslinie eine ganz beliebige Lage im Körper haben kann, wird in einem Körper eine beliebige Gerade gelegt und dieselbe als der Durchschnitt zweier sich rechtwinklig schneidender Ebenen angesehen, so ist die senkrecht zur Geraden gerichtete Schubspannung in der einen Ebene gleich der senkrecht zu derselben Geraden stehenden Schubspannung in der anderen Ebene.

Die Schubspannungen treten also paarweise auf.

Es entspricht dies ganz der Natur der Schiebung, eine Änderung des ursprünglich rechten Winkels zu sein. Die auf die Flächeneinheit der beiden Winkelebenen wirkenden Kräfte, welche
diese Änderung herbeiführen, müssen in der Richtung des einen Schenkels so groß sein wie in derjenigen des anderen, da keine der beiden Schenkelrichtungen in irgend einer Weise vor der anderen ausgezeichnet ist.

§ 31. Schiebungen und Dehnungen. Schubkoeffizient und Dehnungskoeffizient.

1. Mit der Schiebung verknüpfte Dehnung und deren größter Wert.

$ABCD$, Fig. 1, sei der Durchschnitt durch ein Parallelepiped.

Der Körper, welchem dieses angehört, werde nun durch äußere Kräfte ergriffen; infolgedessen ändert er seine Gestalt. Hierbei geht das Rechteck in das Parallelogramm $AEFD$ über; die Ebene, welche ursprünglich in BC sich darstellte, erleidet eine Verschiebung um $BE = CF$, so daß die Schiebung

$$\gamma = \frac{CF}{CD}.$$

Gleichzeitig erfährt die Diagonale AC eine Vergrößerung auf AF. Wird von A aus mit AF ein Kreisbogen beschrieben, so schneidet dieser die Verlängerung von AC in G. Die sehr kleine Strecke FG darf dann als Senkrecht zu AG angesehen werden, während CG die Zunahme der Länge der Diagonale ist. Damit findet sich die Dehnung in Richtung der letzteren

$$\varepsilon = \frac{CG}{AC} = \frac{CF \cos \varphi}{CD} = \frac{CF}{CD} \frac{1}{2} \sin 2 \varphi.$$
§ 31. Schiebungen und Dehnungen.

und wegen

\[\frac{CF}{CD} = \gamma \]

\[\varepsilon = \frac{1}{2} \gamma \sin 2 \varphi. \]

Für \(\varphi = \frac{\pi}{4} \), d. h. für \(\overline{CD} = \overline{AD} \), also für die quadratische Form des Rechteckes, erlangt \(\varepsilon \) seinen größten Wert

\[\varepsilon_1 = \frac{1}{2} \gamma \]

Gleichzeitig erfährt die andere, wegen \(\varphi = \frac{\pi}{4} \) dazu rechtswinklige Diagonale \(\overline{DB} \) eine Zusammendrückung – \(\varepsilon_2 \) von der gleichen Größe

\[- \varepsilon_2 = \frac{1}{2} \gamma. \]

Hierarch ist die Schiebung \(\gamma \) mit einer größten Dehnung \(\varepsilon_1 \) und einer gleichzeitigen, dazu senkrechten größten Verkürzung (Zusammendrückung) \(\varepsilon_2 \) verknüpft\(^1\), welche absolut genommen je halb so groß sind als die Schiebung. Die Richtung dieser Dehnung zweiteilt den rechten Winkel, dessen Änderung die Schiebung mißt.

Hieraus würde zu folgern sein, daß der zuzulassende Wert \(\gamma_1 \) der Schiebung höchstens doppelt so groß sein darf als die äußersten Falles noch für zulässig erachtete Dehnung \(\varepsilon_1 \), d. h.

\[\gamma_1 \leq 2 \varepsilon_1. \]

\(^1\) Hieraus folgt, daß, wenn ein aus durchaus gleichartigem Material bestehender Körper lediglich infolge von Schubspannungen zum Bruche, d. h. zum Zerreiß, gebracht wird, die Rißbildung senkrecht zur Richtung von \(\varepsilon_1 \) (der Diagonale \(AC \) des Quadrates), also in der Richtung von \(\varepsilon_2 \) (der Diagonale \(DB \) des Quadrates) stattfinden muß, sofern das Verhalten des Materials bis zum Bruche hin – wenigstens mit Annäherung – der gleichen Gesetzmäßigkeit folgt. Bei zähen Materialien ist dies infolge der Erscheinung des Fließens nicht zutreffend.
Nach Einführung der zulässigen Zuganstrengung

\[k_z = \frac{\varepsilon_1}{\alpha} \]

sowie der zulässigen Schubanstrengung

\[k_s = \frac{\gamma_1}{\beta} \]

ergibt sich

\[k_s \leq 2 \frac{\alpha}{\beta} k_z, \quad \ldots \quad \ldots \quad 2) \]

allerdings unter der Voraussetzung, daß das Material in allen Punkten nach allen Richtungen hin gleich beschaffen, also isotrop ist, und \(\alpha \) sowie \(\beta \) als unveränderlich angesehen werden können. Wenn die Beziehung 2 benutzt werden soll, um von der zulässigen Normalspannung eines Materials auf die zulässige Schubspannung desselben zu schließen, so erscheint es nötig, überdies zu beachten, daß hierfür Gleichartigkeit der Beanspruchungsweise Vorbedingung ist.

2. Beziehung zwischen Dehnungskoeffizient und Schubkoeffizient.

Auf einen Würfel ABCD, Fig. 2, von der ursprünglichen Seitenlänge 1 wirken in den Seitenflächen AD und BC die Normal-

[Diagramm von einem Würfel mit angezeigten Kräften \(\sigma \), \(\varepsilon \) und \(\gamma \).]

spannungen \(\sigma \). Hierdurch werden die Seitenlängen \(AB \) und \(DC \) um \(\varepsilon \) gedehnt, also auf die Größe \(A_1B_1 = D_1C_1 = 1 + \varepsilon \) gebracht werden, während sich die rechtwinklig hierzu stehenden Kanten \(AD \)
und BC um $\frac{\varepsilon}{m}$ verkürzen (§ 7), demnach die Länge $1 - \frac{\varepsilon}{m}$ annehmen.

Die beiden Diagonalebene AC und BD schlossen ursprünglich einen rechten Winkel miteinander ein. Unter Einwirkung der Normalspannungen σ hat sich dieser Winkel um γ geändert, entsprechend einer Verschiebung z. B. des Punktes C der Diagonalebene AC gegenüber der anderen Diagonalebene um

$$ \gamma = \frac{MC'}{C'C_1}, $$

sofern $C_1C' \perp D_1B_1$.

Die Größe γ folgt unter Berücksichtigung des Umstandes, daß der halbe rechte Winkel sich um $\frac{\gamma}{2}$ geändert hat, aus

$$ \tan \left(\frac{\pi}{4} - \frac{\gamma}{2} \right) = \frac{1}{2} \left(1 - \frac{\varepsilon}{m} \right), $$

$$ \frac{1}{2} \left(1 + \varepsilon \right). $$

Die Benützung des Satzes

$$ \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} $$

führt zu

$$ \frac{1 - \frac{\gamma}{2}}{1 + \frac{\gamma}{2}} = \frac{1 - \frac{\varepsilon}{m}}{1 + \varepsilon}, $$

und unter Beachtung, daß γ und ε sehr kleine Größen gegenüber 1 sind, zu

$$ 1 - \gamma = 1 - \left(1 + \frac{1}{m} \right) \varepsilon, $$

$$ \gamma = \frac{m - 1}{m} \varepsilon. $$
Denken wir uns jetzt den Würfel in der Diagonalebene AC auseinander geschnitten, Fig. 3, so wird die Aufrechterhaltung des Gleichgewichts die Anbringung einer Normalspannung σ_1 und einer Schubspannung τ fordern, derart, daß die Resultante der Kräfte

$$\sigma_1 \cdot AC = \sigma_1 \sqrt{2} \text{ und } \tau \cdot AC = \tau \sqrt{2}$$

![Fig. 3.](image)

gleich der Kraft

$$\sigma \cdot BC = \sigma \cdot 1 = \sigma,$$

d. h.

$$\sigma_1 \sqrt{2} \cdot \sqrt{\frac{1}{2} + \tau \sqrt{2} \cdot \sqrt{\frac{1}{2}}} = \sigma$$

$$\sigma_1 + \tau = \sigma$$

und ferner

$$\sigma_1 \sqrt{2} \cdot \sqrt{\frac{1}{2} - \tau \sqrt{2} \cdot \sqrt{\frac{1}{2}}} = 0$$

$$\sigma_1 = \tau,$$

womit

$$\tau = \frac{\sigma}{2}.$$

Nach dem früheren ist

$$\tau = \frac{\gamma}{\beta} ,$$

$$\sigma = \frac{\varepsilon}{\alpha} ,$$

so daß

$$\frac{\gamma}{\beta} = \frac{1}{2} \cdot \frac{\varepsilon}{\alpha}$$

und mit
\[\gamma = \frac{m+1}{m} \varepsilon, \]
\[\frac{1}{\beta} \frac{m+1}{m} = \frac{1}{2\alpha}, \]
\[\beta = 2 - \frac{m+1}{m} \alpha, \quad \ldots \quad 3) \]

d. h. der Schubkoeffizient ist das \(2 \frac{m+1}{m}\)-fache des Dehnungskoeffizienten.

Gl. 3 kann, wenn \(\alpha\) und \(\beta\) durch Versuche ermittelt worden sind, in der Form
\[m = \frac{2}{\beta} \frac{1}{\alpha} - 2 \]
zur Berechnung von \(m\) benutzt werden.

In der Regel pflegt \(m\) als eine zwischen 3 und 4 liegende Zahl betrachtet zu werden; hiermit findet sich
\[\beta = \frac{5}{2} \alpha \text{ bis } \frac{8}{3} \alpha = 2,5 \alpha \text{ bis } 2,67 \alpha \]
oder
\[\alpha = \frac{3}{8} \beta \text{ bis } \frac{2}{5} \beta = 0,375 \beta \text{ bis } 0,4 \beta. \quad \ldots \quad 4) \]

Aus Gleichung 2 wird alsdann wegen
\[\frac{\alpha}{\beta} = \frac{m}{2(m+1)} \]
\[k_2 \leq \frac{m}{m+1} k_2. \quad \ldots \quad 5) \]
und für \(m = 3\) bis 4
\[k_2 \leq \frac{3}{4} k_2 \text{ bis } \frac{4}{5} k_2 = 0,75 k_2 \text{ bis } 0,8 k_2. \quad \ldots \quad 6) \]
unter den Voraussetzungen, welche zur Beziehung 2 ausgesprochen wurden, und unter der weiteren Voraussetzung, daß \(m\) einen festen Wert besitzt. Treffen dieselben nicht zu, so erscheint die Gleichung 6 nicht ohne weiteres gültig. Dann kann es auf Grund von Versuchsergebnissen und sonstigen Erfahrungen notwendig werden, davon abzuweichen.
V. Drehung.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für jeden Querschnitt desselben ein Kräftepaar, dessen Ebene senkrecht zur Stabachse steht.

Es bezeichne

\(M_d \) das Moment des drehenden Kräftepaares,
\(\Theta_1 \) und \(\Theta_2 \) die beiden Hauptsäträchtigkeitsmomente des Stabquerschnittes (§ 21, Ziff. 1),
\(\Theta \) das kleinere der beiden Hauptsäußrigkeitsmomente,
\(\Theta' = \Theta_1 + \Theta_2 \) das polare Trägeitsmoment,
\(f \) den Inhalt des Querschnittes,
\(r \) die Schubspannung in einem beliebigen Punkte des Querschnittes,
\(k_d \) die zulässige Anstrengung des Materials gegenüber Drehungsbeanspruchung,
\(\beta \) den als unveränderlich vorausgesetzten Schubkoeffizienten (§ 29), (reziproker Wert des Schubelastizitätsmodul),
\(\gamma = \beta r \) die Schiebung oder Gleitung in einem beliebigen Punkte des Querschnittes (§ 28),
\(\varphi \) den verhältnismäßigen Drehungswinkel, d. h. den Winkel, um welchen sich das Hauptachsenkreuz eines Stabquerschnittes gegenüber demjenigen des um 1 davon abstehenden Querschnittes verdreht,
\(l \) die Länge des Stabes.

§ 32. Stab von kreisförmigem Querschnitt.

Durch die beiden Kräftepaaare \(KK \), Fig. 1, deren Ebenen die Stabachse senkrecht schneiden, und welche, das Moment \(M_d \) besitzend, sich an dem Kreiszylinder das Gleichgewicht halten, werden die einzelnen Querschnitte des Stabes gegeneinander verdreht. Um uns ein Bild über diese Formänderung zu verschaffen, teilen
wir die Mantelfläche des Zylinders, Fig. 2, bevor dieser von den äußeren Kräften ergriffen wird, durch n Gerade aa parallel zur Achse in n (25) Rechtecke, je von der Breite $\pi d : n$ ($40 \pi : 25 = 5,0$ mm, da $d = 40$ mm), und diese durch Parallelkreise im Abstand $\pi d : n$ (5,0 mm) in Quadrate, deren Seitenlänge $\pi d : n$ (5,0 mm) beträgt. Auf diese Weise erhalten wir die Fig. 2. Wird nun der so gezeichnete Zylinder der Verdrehung unterworfen, so geht er in Fig. 3 (Tafel IX) über. Aus derselben ist zu entnehmen:
a) daß die auf den unbelasteten Zylinder gezeichneten Quadrate in unter sich gleiche Rhomboben übergegangen sind,
b) daß die Ebenen der Parallelkreise, d. s. die Querschnitte des Stabes, eben und senkrecht zur Achse des letzteren geblieben sind,
c) daß sich je zwei aufeinander folgende Querschnitte immer gleich viel gegeneinander verdreht haben, daß also beispielsweise der Bogen, um welchen sich ein Punkt des Parallelkreises XX, Fig. 2, gegenüber dem ursprünglich gleich gelegenen Punkte im Stabquerschnitt AA bewegt hat, proportional dem Abstande x ist.

Sind nun f_1 und f_2 zwei um 1 voneinander abstehende Querschnitte des Stabes und P_1, P_2 zwei ursprünglich gleich gelegene Umfangspunkte in denselben, so wird sich unter Einwirkung der äußeren Kräfte P_2 gegen P_1 um eine Strecke γ_1 verdreht haben, welche nach Maßgabe des in § 28 Erörterten als die Schiebung im Punkte P_1 zu bezeichnen ist. Für die Schiebung γ in einem auf dem Halbmesser OP_1, Fig. 4, im Abstande $OP = \varrho$ von der Achse gelegenen Punkt P erscheint auf Grund der oben angeführten Erfahrungen die Annahme zutreffend, daß sie sich zu derjenigen im Umfangspunkte P_1 verhält wie $\varrho : \gamma_1$, also

$$\gamma : \gamma_1 = \varrho : \gamma_1,$$

d. h.

$$\gamma = \gamma_1 \frac{\varrho}{\gamma_1} . \ldots \ldots \ldots \ldots 1)$$
Wird in Fig. 4 die tangentielle Linie $P_1 P_1' = \gamma_1$ und die hierzu parallele Strecke $PP' = \gamma = \gamma_1 \frac{o}{r}$ gemacht, so liefert die zeichnerische Darstellung der Schiebungen in allen Punkten der Geraden OP_1 die Gerade $OP' P_1'$.

Nach § 29 sind die entsprechenden Schubspannungen

im Punkt P_1 \[\tau_1 = \frac{\gamma_1}{\beta} \]

im Punkt P \[\tau = \frac{\gamma}{\beta} = \frac{\gamma_1}{\beta r} \cdot \varrho. \]

τ_1 muß naturnah tangential zum Kreise, also senkrecht zum Halbmesser OP_1 gerichtet sein. Das letztere gilt auch für τ.

Wird die Schubspannung τ durch die Strecke PP'', welche senkrecht zu OP steht, dargestellt und ist der Schubkoeffizient β konstant, so ergibt sich als geometrischer Ort aller Punkte P'' eine durch den Mittelpunkt O gehende Gerade. Dies trifft z. B. mit großer Annäherung zu für Schmiedeeisen und Stahl innerhalb der Proportionalitätsgrenze. Ist dagegen β veränderlich und zwar derart, daß β zunimmt mit wachsender Schiebung oder Spannung, wie dies beispielsweise bei Gußeisen der Fall, so liegen die durch bestimmten Punkte (P_1'') und (P'') auf einer gegen die Gerade OP_1 gekrümmten Kurve $O (P'') (P_1'')$. Die Spannungen nehmen dann nach außen hin langsam zu als bei Unveränderlichkeit von β.

Die im Querschnitt durch das Kräftepaar vom Momente M_d wachgerufenen Schubspannungen müssen sich mit M_d im Gleichgewicht befinden. Wird das in P liegende Flächenelement mit df bezeichnet, so spricht sich diese Forderung aus in

\[\int \tau \; df \cdot \varrho = M_d, \]

\[M_d = \frac{\gamma_1}{r} \int \frac{1}{\beta} \varrho^2 \; df \]

und, wenn β konstant,

\[M_d = \frac{\gamma_1}{\beta r} \int \varrho^2 \; df. \]
Unter Beachtung, daß
\[q^2 = y^2 + z^2, \]
sofern \(y \) und \(z \) die rechtwinkligen Koordinaten des in \(P \) liegenden Flächenelementes sind, und mit
\[\int y^2 \, dy = \Theta_1 \quad \text{und} \quad \int z^2 \, dz = \Theta_2 \]
wird
\[M_d = \frac{\gamma_1}{\beta r} (\Theta_1 + \Theta_2) = \frac{\gamma_1}{r} \frac{\Theta_1 + \Theta_2}{r} = \frac{\gamma_1}{r} \Theta'_1. \]

Die beiden Trägheitsmomente \(\Theta_1 \) und \(\Theta_2 \) sind für den vollen Kreisquerschnitt
\[\Theta_1 = \Theta_2 = \pi \frac{d^4}{64} = \frac{\pi}{4} r^4. \]

Demnach
\[M_d = \frac{\gamma_1}{16} \pi d^3 = \frac{\gamma_1}{2} \frac{\pi}{r^3} \quad \ldots \quad 2) \]
\[M_d \leq \frac{\pi}{16} k_d d^3 \quad \text{oder} \quad k_d \geq \frac{16}{\pi} \frac{M_d}{d^3} \quad \ldots \quad 3) \]

Für den Kreisringquerschnitt ergibt sich, sofern \(d \) der äußere und \(d_0 \) der innere Durchmesser ist,
\[\Theta_1 = \Theta_2 = \frac{\pi}{64} (d^4 - d_0^4) \]
\[M_d = \gamma_1 \frac{\pi}{16} d^4 - d_0^4 \]
\[M_d \leq \frac{\pi}{16} k_d \frac{d^4 - d_0^4}{d} \quad \text{oder} \quad k_d \geq \frac{16}{\pi} M_d \frac{d}{d^4 - d_0^4} \quad \ldots \quad 4) \]

Der Drehungswinkel \(\vartheta \) folgt unmittelbar aus der gegebenen Begriffsbestimmung
\[\vartheta = \frac{\gamma_1}{\beta} \frac{M_d}{\Theta_1 + \Theta_2} = \frac{32}{\pi} \beta \frac{M_d}{d^4} \quad \ldots \quad 5) \]
§ 32. Stab von kreisförmigem Querschnitt.

beziehungsweise

\[\Theta = \frac{32}{\pi} \beta \frac{M_d}{d^4 - d_0^4}. \]

Hiernach beträgt der im Abstande 1 von der Achse gemessene Verdrehungsbogen der beiden um \(l \) voneinander abstehenden Querschnitte des Kreiszyinders

\[\Theta = \Theta l = \frac{32}{\pi} \beta \frac{M_d}{d^4} l, \text{ bezw. } \frac{32}{\pi} \beta \frac{M_d}{d^4 - d_0^4} l. \]

Bei den vorstehenden Betrachtungen wurden nur Schubspannungen im Stabquerschnitt ins Auge gefaßt; so z. B. im Punkte \(P \), Fig. 4, nur die Schubspannung \(\tau \), welche, senkrecht zu \(OP_1 \) angreifend, in der Bildebene wirkt. Nach § 30 treten jedoch die Schubspannungen immer paarweise auf, derart, daß in demselben Punkte \(P \) senkrecht zur Bildebene, d. h. senkrecht zum Querschnitte, eine der oben erwähnten Spannung \(\tau \) gleiche Schubspannung vorhanden ist. Das Flächenelement, in dem sie wirkt, liegt im Punkte \(P \) derjenigen Ebene, welche durch den Halbmesser \(OP_1 \) und die Stabachse bestimmt wird. So findet sich beispielsweise im Punkte \(P \), die Schubspannung \(\tau_i \) nicht bloß im Querschnitt (tangential zum Kreisumfang gerichtet), sondern auch in der Achsialebene \(OP_1 \) mit der Mantellinie des Zylinders zusammenfallend.

Der Übergang der Quadrate, Fig. 2, (bei Verdrehung des Zylinders) in die Rhomen, Fig. 3 (Taf. IX), beweist dies auch unmittelbar aus der Anschauung. Wie wir in § 28 sahen, ist die Änderung des ursprünglich rechten Winkels gleich der Schiebung.

Diese Winkeländerung muß demnach wegen \(\tau = \frac{\gamma}{\beta} \) die Schubspannung unmittelbar. Sie betrifft sowohl den wagrechten wie auch den senkrechten Schenkel des rechten Winkels. Die entsprechende Schubspannung ist deshalb ebensowohl in senkrechter wie in wagrechter Richtung vorhanden. Sie muß, da alle Rhomen unter sich gleich sind, für alle Stellen der Mantelfläche des Zylinders dieselbe Größe besitzen, sowohl tangential zur Umfangslinie also auch in Richtung der Achse des Stabes. Die größte Schubspannung, welche im Querschnitt stattfindet, tritt also auch in Richtung der Stabachse auf.

20°
Schneiden wir aus dem Zylinder ein kleines Körperelement $ACDBEF$, Fig. 5, heraus, mit den Querschnittsebenen ACD, BEF und den Achsialebenen $ABFD$, $ABEC$, so ergibt die graphische Darstellung der in den Ebenen CDA und BFD wirkenden Schubspannungen unter Voraussetzung eines unveränderlichen Schubkoeffizienten je ein Dreieck. Sie zeigt deutlich das paarweise Auftreten der Schubspannungen in den beiden Ebenen, welche AD zur Durchschnittslinie haben 1).

Bei gewalztem Schweifseisen oder Draht aus solchem Material u. s. w. findet infolge der ausgeprägten Faser richtung die achsiale Schubspannung häufig einen verhältnismäßig geringen Widerstand, weshalb dann Längsrisse eintreten, wie Fig. 6 (Tafel IX) für ein der Verdrehung unterworfenes Stück Walzeisen erkennen läßt 2).

1) Die Betrachtung von Fig. 5 gestattet, nach dem Vorgange von Brecht einen allgemeinen Satz über die Schubkräfte eines auf Verdrehung beanspruchten Stabes abzuleiten.

Die Gleichgewichtsbedingung des Körperelementes in Richtung der Stabachse AB: Summe der Schubkräfte in der Ebene $ADFB$ + Summe der Schubkräfte in der Ebene $ACEB$ muß gleich Null sein, führt bei Wahl von $AB = 1$ unter Berücksichtigung der Gleichheit der Schubspannungen in zwei senkrecht zueinander stehenden Ebenen zu dem Satz: werden in einem Querschnitt zwei Gerade AD und AC nach dem Umfange gezogen, so ist die Summe der Schubkräfte, welche sich für die in AD gelegenen Flächenelemente senkrecht zu AD wirkend ergeben, gleich der Summe der Schubkräfte, welche die in AC gelegenen Flächenelemente senkrecht zu AC liefern.

2) Wird die Verdrehung weiter fortgesetzt, so liegen die Längsrisse auf mehr oder minder stark geneigten Schraubenlinien, wie z. B. die betreffenden Abbildungen auf Tafel XVI erkennen lassen. Vergl. hierzu das in § 35, Ziff. 3 Gesagte.
§ 33. Stab von elliptischem Querschnitt.

Die achsial gerichteten Schubspannungen sind auch Ursache, daß bei auf Drehung in Anspruch genommenen Körpern nicht selten schon frühzeitig bleibende Verdrehung eintritt, wie dies z. B. bei gewalztem Schweifeisen ausgeprägt der Fall zu sein pflegt.

Bei mehr isotropem Material erfolgt die Rißbildung nach Maßgabe der Fußbemerkung zu § 31, Ziff. 1, S. 297 unter 45° gegen die Richtungen der Schubspannungen, wie dies der Verlauf der Bruchlinien in den Abbildungen auf Tafel XIV deutlich erkennen läßt. In Fig. 3 (Tafel IX) müßte die Bruchlinie als rechtsgängige, unter 45° geneigte Schraubenlinie verlaufen, sofern die in der Fußbemerkung zu § 31, Ziff. 1, S. 297 bezeichnete Voraussetzung erfüllt ist.

§ 33. Stab von elliptischem Querschnitt.

1. Formänderung.

Nach dem in § 32 gegebenen Vorgange wird ein Zylinder mit elliptischem Querschnitt (große Achse = 2a = 50 mm, kleine Achse = 2b = 25 mm) hergestellt und seine Mantelfläche in Quadrate eingeteilt.

Unter Einwirkung der beiden Kräftepaare, welche sich an ihm das Gleichgewicht halten, geht derselbe in die Gestalt Fig. 1 (Tafel X) über1). Die beiden ursprünglich geraden Mantellinien, welche die Endpunkte der großen Halbachsen aller Querschnitte enthalten, sind durch die Bezeichnung a a hervorgehoben, während diejenigen zwei Linien, welche von den Endpunkten der kleinen Halbachsen sämtlicher Querschnitte gebildet werden, die Bezeichnung b b tragen. Wir erkennen bei genauer Untersuchung des verdrehten Zylinders:

1) Das Material des auf photographischem Wege dargestellten Zylinders ist wie bei Fig. 3, § 32 (Tafel IX) und bei Fig. 1, § 34 (Tafel XI) sowie Fig. 2, § 34 (Tafel XII) Hartblei. Dasselbe behält die Formänderung fast vollständig bei und gibt deshalb auch nach der Lösung des Stabes aus der Prüfungsmaschine ein gutes Bild dieser Änderung. Bei Verwendung von stark elastischem Material wie Gummi ist die Formänderung eine gleiche, nur verschwindet sie mit der Entlastung des Probekörpers zu einem großen Teile und entzieht sich so der Darstellung. Versuche mit schmiedbarem Eisen führen zu einem ganz entsprechenden Ergebnisse.
a) daß die Quadrate in Rhomben übergegangen sind,
b) daß die Winkel derjenigen Rhomben, welche mit der einen Seite in der jetzt schraubenförmig gekrümmten Linie bb liegen, am meisten von dem ursprünglich rechten Winkel abweichen, während diejenigen Rhomben, deren eine Seite von der Schraubenlinie aa gebildet wird, die geringste Abweichung von ihrer früheren Gestalt, dem Quadrate, zeigen,
c) daß die ursprünglich ebenen Querschnitte sich gewölbt haben,
d) daß jedoch die beiden Hauptachsen eines Querschnittes in der ursprünglichen Ebene verblieben sind und den rechten Winkel beibehalten haben,
e) daß sich je die beiden Hauptachsen zweier aufeinander folgenden Querschnitte immer um gleichviel gegeneinander (um die in ihrer Lage unverändert gebliebene Stabachse) verdreht haben\(^1\).

2. Schubspannungen.

Fassen wir zunächst einen Umfangspunkt P' des Querschnittes, Fig. 2, ins Auge, so muß die Schubspannung τ in dem zu P' gehörigen Querschnittselement naturgemäß tangential zur Umfangslinie gerichtet sein, sofern hier äußere, eine andere Richtung der Schubspannung bedingende Kräfte nicht angreifen.

Wir zerlegen τ in die beiden Komponenten

\[\tau'_y, \text{ senkrecht zur } y\text{-Achse wirkend,} \]
\[\tau'_z, \text{ und} \]

\(^1\) Die Bestimmung dieses Verdrehungswinkels erfolgt in § 43.
bezeichnen durch \(\psi \) den Winkel, welchen die Tangente im Punkte \(P' \) mit der \(y' \)-Achse einschließt, sowie durch \(y' \) und \(z' \) die Koordinaten des Umfangspunktes \(P' \). Dann folgt zunächst

\[
\tan \psi = \frac{\tau_y}{\tau_z}
\]

und sodann aus der Gleichung der Ellipse

\[
\frac{y'^3}{b^2} + \frac{z'^3}{a^2} = 1,
\]
durch Differentiation

\[
\frac{y'}{b^2} \frac{dy'}{dy} + \frac{z'}{a^2} \frac{dz'}{dy} = 0
\]

\[
\frac{dz'}{dy'} = -\frac{a^2}{b^2} \frac{y'}{z'}.
\]

Aus Fig. 2 ergibt sich unmittelbar

\[
\tan \psi = \frac{dz'}{-dy'}.
\]

Folglich durch Gleichsetzen der beiden für \(\tan \psi \) erhaltenen Werte

\[
\frac{\tau_y}{\tau_z} = \frac{a^2}{b^3} \frac{y'}{z'}.
\]

Hierarch erscheint \(\tau_y \) proportional \(y' \) und \(\tau_z \) proportional \(z' \).

Denken wir uns für den im Inneren des Querschnittes liegenden Punkt \(P \), bestimmt durch die Koordinaten \(y \) und \(z \), die entsprechende (ähnliche) Ellipse konstruiert, so wird auch hier die Schubspannung \(\tau \), deren Komponenten \(\tau_y (\perp OY) \) und \(\tau_z (\perp OZ) \) seien, tangential gerichtet sein. Demgemäß erhalten wir

\[
\tau_y = Ay \quad \tau_z = Bz,
\]

worin \(A \) und \(B \) Konstante bedeuten.
Die im Querschnitte wachgerufenen Schubspannungen müssen sich nun mit dem Momente M_d im Gleichgewicht befinden. Wird das in P liegende Flächenelement mit df bezeichnet, so ergibt sich die Bedingungsgleichung

$$ f (\tau_y df \cdot y + \tau_z df \cdot z) = M_d , $$

woraus unter Beachtung der Gleichungen 2 und mit Rücksicht darauf, daß nach § 17, Ziff. 6

$$ f y^2 df = \frac{\pi}{4} a b^3 \quad \quad \quad f z^2 df = \frac{\pi}{4} a^3 b $$

$$ M_d = A \frac{\pi}{4} a b^3 + B \frac{\pi}{4} a^3 b. $$

Die Verbindung der Gleichungen 1 und 2 ergibt

$$ \frac{a^2}{b^2} \frac{y}{z} = \frac{A y}{B z}, $$

woraus

$$ \frac{A}{B} = \frac{a^2}{b^2} \text{ oder } A = B \frac{a^2}{b^2}. $$

Durch Einführung dieses Wertes in die Gleichung für M_d findet sich

$$ M_d = B \frac{a^2}{b^2} \frac{\pi}{4} a b^3 + B \frac{\pi}{4} a^3 b = \frac{\pi}{2} a^3 b B, $$

$$ B = \frac{2}{\pi} \frac{M_d}{a^3 b}, $$

$$ A = B \frac{a^2}{b^2} = \frac{2}{\pi} \frac{M_d}{a b^3}. $$

Hiermit nach den Gleichungen 2 die Schubspannungen für den beliebigen Querschnittspunkt P.
§ 33. Stab von elliptischem Querschnitt.

\[\tau_y = Ay = \frac{2}{\pi} \frac{M_d}{ah^3} y, \quad \ldots \ldots \quad 3 \]

\[\tau_z = Bz = \frac{2}{\pi} \frac{M_d}{a^3 b^3} z, \quad \ldots \ldots \quad 3 \]

\[\tau = \sqrt{\tau_y^2 + \tau_z^2} = \frac{2}{\pi} \frac{M_d}{a^3 b^3} \sqrt{a^4 y^2 + b^4 z^2}. \quad \ldots \ldots \quad 4 \]

Dieser Ausdruck wächst mit \(y \) und \(z \), erlangt also für bestimmte Umfangspunkte den größten Wert. Zur Feststellung, in welchen Punkten des Umfanges dies der Fall ist, werde \(a \geq b \) vorausgesetzt und dem Ausdruck für \(\tau' \), gültig für den Umfangspunkt \(y'z' \), die Form

\[\tau' = \frac{2}{\pi} \frac{M_d}{a b^2} \sqrt{\left(\frac{y'}{b} \right)^2 + \left(\frac{z'}{a} \right)^2 \left(\frac{b}{a} \right)^2} \quad \ldots \ldots \quad 5 \]

gegeben. Da

\[\left(\frac{y'}{b} \right)^2 + \left(\frac{z'}{a} \right)^2 = 1, \]

so muß wegen \(a \geq b \)

\[\left(\frac{y'}{b} \right)^2 + \left(\frac{z'}{a} \right)^2 \left(\frac{b}{a} \right)^2 \leq 1 \]

sein. Demnach ergibt sich der größte Wert der Schubspannung für \(y' = \pm b \) und \(z' = 0 \) zu

\[\tau'_{\text{max}} = \frac{2}{\pi} \frac{M_d}{a b^2}, \quad \ldots \ldots \quad 6 \]

d. h. die größte Schubspannung tritt in den Endpunkten \(\mathcal{B} \mathcal{B} \) der kleinen Achse, also in denjenigen Punkten auf, welche der Stabachse am nächsten liegen.

Hiermit folgt

\[k_d \geq \frac{2}{\pi} \frac{M_d}{a b^2} \text{ oder } M_d \leq \frac{\pi}{2} k_d a b^2. \quad \ldots \ldots \quad 7 \]
In den Endpunkten AA der großen Achse ist die Schubspannung, da hier
\[y' = 0 \quad z' = \pm a \]
\[\tau' = \frac{2}{\pi} \frac{M_d}{a^2 b} = \frac{b}{a} \frac{m_{max}}{r_{max}} \ldots \ldots 8 \]
d. i. im Verhältnis der Halbachsen kleiner als die Spannung in den Punkten BB^1.

Dieses gegenüber der älteren Auffassung, der zufolge die Spannungen mit dem Abstande von der Achse wachsen, für den ersten Augenblick überraschende Ergebnis steht in voller Übereinstimmung mit der oben unter Ziff. 1, b angeführten Beobachtung. Die Winkeländerungen, welche nach § 28 die Schiebungen γ messen, die ihrerseits nach § 29 zu den Schubspannungen in der Beziehung
\[\tau = \frac{\gamma}{\beta} \]
stehen, sind — Fig. 1 (Taf. X) — am größten in den Endpunkten der kleinen und am kleinsten in den Endpunkten der großen Achse der Ellipse.

Hinsichtlich des Gesetzes, nach dem sich die Schubspannungen im Inneren ändern, ist die ohne weiteres aus den Gleichungen 3 und 4 folgende Bemerkung von Interesse, daß für alle auf der

1) Dieses Verhältnis läßt sich auch unmittelbar unter Zuhilfenahme des in der Fußbemerkung 1, S. 308 ausgesprochenen Satzes ableiten.
Geraden \(OP' \), Fig. 2, liegenden Querschnittselemente die Spannungen parallel gerichtet und proportional dem Abstande von der Stabachse sind. In Fig. 3 ist das Änderungsgesetz der Schubspannungen dargestellt für die Punkte der großen und der kleinen sowie für diejenigen einer beliebigen Halbachse \(OP' \). Die in Fig. 3 gezeichneten Kräftedreiecke müssen inhaltsgleich sein (S. 308, Fußbemerkung 1). Für die Umfangspunkte läßt sich das Änderungsgesetz unmittelbar der Gleichung 5 entnehmen.

Handelt es sich nicht um einen Voll-, sondern um einen Hohlstab, Fig. 4, so gilt unter der von dem Gange der obigen Entwicklung bedingten Voraussetzung, daß die innere Begrenzungsellipse der äußeren ähnlich ist, d. h.

\[a_0 : a = b_0 : b = m, \]

wegen

\[\int y^2 \, df = \frac{\pi}{4} (a \, b^3 - a_0 \, b_0^3) \]
\[\int z^2 \, df = \frac{\pi}{4} (a^3 \, b - a_0^3 \, b_0) \]

\[M_d = A \frac{\pi}{4} (a \, b^3 - a_0 \, b_0^3) + B \frac{\pi}{4} (a^3 \, b - a_0^3 \, b_0), \]

woraus dann mit

\[A = \frac{a^2}{b^2} B \]
\[B = \frac{2}{\pi} \frac{M_d}{(1 - m^4) a^3 \, b} \]

und schließlich

\[t = \frac{2}{\pi} \frac{M_d}{(1 - m^4) a^3 \, b^2} \sqrt{a^4 \, y^2 + b^4 \, z^2}. \quad \ldots \quad 9 \]

Für die Punkte \(B \) des Umfanges erlangt \(t \) seinen Größtwert, nämlich

\[t_{\text{max}} = \frac{2}{\pi} \frac{M_d}{(1 - m^4) a \, b^2} = \frac{2}{\pi} \frac{M_d}{a \, b^3 - a_0 \, b_0^3} b, \quad 10 \]

so daß

\[k_{\text{d}} \geq \frac{2}{\pi} \frac{M_d}{a \, b^3 - a_0 \, b_0^3} b \] oder \[M_d \leq \frac{\pi}{2} k_{\text{d}} \frac{a \, b^3 - a_0 \, b_0^3}{b}. \quad 11 \]
Die Gleichungen 7 und 10 zeigen deutlich, daß die Widerstandsfähigkeit eines elliptischen Voll- oder Hohlstabs gegenüber der Drehungsbeanspruchung abhängt von dem kleinen der beiden Hauptträgheitsmomente, also nicht von der Summe beider, wie die ältere Lehre von der Drehungsfestigkeit angab.

Die letztere schuf ursprünglich ihre Entwicklungen, welche davon ausgingen, daß die Schubspannungen proportional mit dem Abstande des Querschnittselementes von der Stabachse wachsen und senkrecht zu diesem Abstande stehen, allerdings nur für die in § 32 behandelten Querschnitte; hierfür war sie auch zutreffend. Ihre Übertragung auf andere Querschnitte war unzulässig.

Die Gleichung 11 enthält die Beziehung 3 und 4, § 32, je als besonderen Fall in sich. Es wird für

\[a = b = \frac{d}{2}; \quad a_0 = b_0 = \frac{d_0}{2}; \]

\[M_a \leq \frac{\pi}{16} k_d \frac{d^4 - d_0^4}{d} \]

und für \(d_0 = 0 \)

\[M_d \leq \frac{\pi}{16} k_d d^2. \]

Die Schlußbemerkungen zu § 32, betreffend das paarweise Auftreten der Schubspannungen u. s. w., gelten auch hier, überhaupt sinngemäß für alle auf Drehung beanspruchten Körper.

Hinsichtlich der Folgen, welche eine Hinderung der oben unter Ziff. 1, c festgestellten Querschnittswölbung mit sich bringt, sei auf § 34, Ziff. 3 verwiesen.

§ 34. Stab von rechteckigem Querschnitt.

1. Formänderung.

Nach dem Vorgange in den Paragraphen 32 und 33 wird ein Prisma von rechteckigem Querschnitt (60 mm breit, 20 mm stark) hergestellt und jede seiner 4 Mantelflächen in Quadrate von 5 mm Seitenlänge eingeteilt. Unter Einwirkung der beiden Kräftepaare, welche sich an dem Stabe das Gleichgewicht halten, geht derselbe in die Form Fig. 1 (Taf. XI) über.
Fig. 1. § 34.
Wir erkennen folgendes:

a) Die Quadrate haben ihre ursprüngliche Form mehr oder minder verloren und rhombenartige Gestalt angenommen.

Die Querlinien schneiden mit ihren äußersten Elementen die 4 Eckkanten des Stabes senkrecht, wie dies ursprünglich jede der früher geraden Querlinien in ihrer ganzen Erstreckung tat; dagegen ändert sich die Rechtwinkligkeit zwischen Quer- und Längslinien um so mehr, je näher die letzteren der Seitenmitte liegen. Die Änderung des rechten Winkels, d. h. die Schiebung (§ 28), beträgt hiernach in den Kanten des Stabes Null, wächst von da zunächst ziemlich rasch, sofern die breite Seitenfläche ins Auge gefaßt wird, und erreicht für sämtliche Seitenflächen in deren Mitten ausgezeichnete Werte, von denen derjenige in der Mitte der breiten Seitenflächen der größere ist. Die größte Schiebung findet hiernach in denjenigen Punkten des Stabumfanges statt, welche der Achse am nächsten liegen.

b) Die ursprünglich ebenen Querschnitte haben sich gewölbt.

c) Die beiden Hauptachsen eines Querschnittes sind in der ursprünglichen Ebene geblieben. (Für einen Querschnitt ist dessen ursprüngliche Ebene gestrichelt eingetragen.)

d) Je die beiden Hauptachsen zweier aufeinander folgenden Querschnitte haben sich immer um gleichviel gegeneinander verdreht¹).

Hinsichtlich der Wölbung der Querschnitte ist es von Interesse zu beachten, daß der Abstand derjenigen Punkte des gewölbten Querschnittes, welche von den Seitenmitten ab und nach den Stabkanten hin gelegen sind, von der ursprünglichen Querschnittsebene (vergl. Ziff. 3) sich als ziemlich bedeutend erweist, und daß infolgedessen die Ausbildung dieser gewölbten Form eine verhältnismäßig große Zurückziehung (positive im ersten und dritten, negative im zweiten und vierten Quadranten) der von den Seitenmitten abgelegenen Fasern gegenüber der früheren Querschnittsebene zur Folge hat. Wie ersichtlich, ist die Wölbung erhaben, d. h. der Abstand der einzelnen Querschnittselemente von der Grundebene hat sich vergrößert in denjenigen diametral zuein-

¹) Die Bestimmung dieses Verdrehungswinkels erfolgt in § 43. Vergl. auch die erste Fußbemerkung zu § 52, Ziff. 2, b.
ander liegenden beiden Querschnittsvierteln, gegen deren lange Seiten die Kräfte des drehenden Kräftepaares gerichtet sein müßten, wenn hierdurch die stattgebahnte Verdrehung bewerkstelligt werden sollte. In den beiden anderen Querschnittsvierteln ist die Wölbung vertieft, d. h. der Abstand der einzelnen Querschnittselemente von der Grundebene hat sich verkleinert.

Die Stirnflächen des verdrehten Prisma werden hiernach zeigen (vergl. Taf. XI, Fig. 1, unten rechts)

<table>
<thead>
<tr>
<th>Viertel</th>
<th>erhabene Wölbung</th>
<th>vertiefte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ist für den rechteckigen Stab $b = h$, d. h. handelt es sich um einen quadratischen Querschnitt, so nimmt derselbe bei der Verdrehung die Form Fig. 2 (Taf. XII) an. Dieselbe bestätigt das oben unter a) bis d) Erkannte durchaus. Nur hinsichtlich der Wölbung der Querschnitte tritt insofern eine Änderung ein, als hier alle Seiten gleich groß sind, und deshalb kein Grund vorliegt, weshalb sich das eine Viertel anders verhalten soll wie das andere, wenn die Kräfte, welche das vorhandene Kräftepaar liefern, auf den durch die Verdrehungsrichtung bestimmten 4 Halbseiten wirkend gedacht werden. Tatsächlich weist Fig. 2, Taf. XII nach, daß für quadratischen Querschnitt (vergl. Fig. 2) bei der angenommenen Verdrehungsrichtung die Wölbung eine erhabene ist in den Achteln 1, 3, 5 und 7, dagegen eine vertiefte in den Achteln 2, 4, 6 und 8. Außer den beiden Symmetrieachsen verbleiben noch die zwei Diagonalen in der ursprünglichen Querschnittsebene und damit auch die vier Eckpunkte. Die hierdurch ausgezeichneten vier Linien weisen nach Ziff. 2 noch die weitere Eigenschaft auf, daß die in ihren Punkten wirkenden Schubspannungen senkrecht zu ihnen gerichtet sind.

Die Erkenntnis dieser eigenartigen Formänderungen der Querschnitte ist unter Umständen von großer praktischer Bedeutung, wie unter Ziff. 3 am Schlusse dieses Paragraphen näher erörtert werden wird.
Fig. 2, § 34.
2. Schubspannungen.

Da die Schubspannungen in den Querschnittselementen der Umfangslinie unter der Voraussetzung, daß äußere Kräfte hier nicht auf die Mantelfläche des Stabes wirken, nur tangential an diese Linie gerichtet sein können, so müssen sie auf der Begrenzungsstrecke AC, Fig. 1 (Taf. XI) oder Fig. 3, in die Richtung AC fallen, ebenso auf der Strecke BC in die Richtung BC. Demgemäß ergeben sich im Flächenelement C (Eckpunkt) des Querschnittes, da dasselbe sowohl der Linie AC wie auch der Linie BC angehört, zwei senkrecht zueinander gerichtete Schubspannungen, welche eine Resultante liefern müßten. Dieselbe hätte jedenfalls die Forderung zu befriedigen, daß sie gleichzeitig in die Richtungen von AC und BC falle. Dieser Bedingung kann sie nur entsprechen, wenn ihre Größe Null ist. Infolgedessen muß die Schubspannung in C selbst Null sein. Aus diesem Grunde werden sich die in den Querschnittselementen AC wirkenden Schubspannungen von A nach C hin bis auf Null vermindern müssen; ebenso werden die in BC tätigen Schubspannungen von B nach C bis auf Null abzunehmen haben.

Die Richtigkeit dieser Erwägungen wird voll bestätigt durch die oben unter Ziff. 1, a angegebene Beobachtung. Dort war festzustellen, daß die Schiebungen in den Kantenpunkten, d. h. in C Null waren, nach der Mitte der Seite, d. h. nach A bezw. B hin erst rasch und dann langsamer wuchsen, entsprechend einem Verlaufe etwa nach der Kurve CH, Fig. 3, die erhalten wird durch
Ermittlung der Änderungen der ursprünglich rechten Winkel; demgemäß werden sich auch die Schubspannungen von \(C \) nach \(A \) hin ändern.

Zum Zwecke der Bestimmung der letzteren erinnern wir uns, daß beim elliptischen Querschnitt (§ 33) die im beliebigen Punkte \(P \) wirkende Spannung \(\tau \) die beiden Komponenten \(\tau_y \) und \(\tau_z \) lieferte, für welche gilt

\[
\tau_y = Ay \quad \tau_z = Bz. \]

Hier werden \(\tau_y \) (senkrecht zur \(y \)-Achse) und \(\tau_z \) (senkrecht zur \(z \)-Achse) in entsprechender Weise von \(y \) und \(z \) abhängen müssen. Dort waren \(A \) und \(B \) konstante Größen, während sie hier veränderlich sein müssen, da ja \(\tau_y \) für \(y = \frac{b}{2} \) nach \(C \) hin bis auf Null abzunehmen hat, ebenso \(\tau_z \) für \(z = \frac{h}{2} \).

Wird die Schubspannung in der Mitte der langen Seite, d. h. in \(A \) mit \(\tau'_a \), diejenige in Punkt \(P' \), welcher im Abstande \(z \) von \(A \) auf der Strecke \(AC \) gelegen ist, mit \(\tau' \) bezeichnet und \(AH = \tau_a, P' P'' = \tau' \) gemacht; wird ferner in Anlehnung an § 38, Fig. 4, dem Änderungsgesetz der Schubspannungen in der Linie \(AC \), d. h. dem Verlaufe der Linie \(CP''H \), die einfachste Kurve, die gewöhnliche Parabel mit \(H \) als Scheitel und \(HA \) als Hauptsache zugrunde gelegt, so folgt nach dem bekannten Satz, daß sich bei der Parabel die Abszissen verhalten wie die Quadrate der Ordinaten

\[
(\tau'_a - \tau') : \tau'_a = z^2 : \left(\frac{h}{2} \right)^2
\]

\[
\tau' = \tau'_a \left[1 - \left(\frac{2z}{h} \right)^2 \right].
\]

Demgemäß setzen wir für den Faktor \(A \) in der Gleichung

\[
\tau_y = Ay
\]

\[
A = c \tau_a \left[1 - \left(\frac{2z}{h} \right)^2 \right] = m \left[1 - \left(\frac{2z}{h} \right)^2 \right]
\]

und ganz entsprechend für \(B \) in dem Ausdruck \(\tau_z = Bz \)

\[
B = d \tau'_b \left[1 - \left(\frac{2y}{b} \right)^2 \right] = n \left[1 - \left(\frac{2y}{b} \right)^2 \right],
\]
wenn c, d, m und n Konstante sind, und τ'_b die Schubspannung im Punkte B bezeichnet.

Die Gleichungen

\[
\tau_y = Ay \\
\tau_z = Bz
\]

liefern, da A für $z = 0$ und B für $y = 0$ konstant, die in Fig. 4 dargestellte Spannungsänderung. Somit nach dem in der Fußbemerkung S. 308 ausgesprochenen Satz

\[
\frac{1}{2} \tau'_b h = \frac{1}{2} \tau'_a b \\
\tau'_b = \tau'_a \frac{b}{h}.
\]

Es ergibt sich

\[
\tau_y = m \left[1 - \left(\frac{2z}{h} \right)^2 \right] y, \\
\tau_z = n \left[1 - \left(\frac{2y}{b} \right)^2 \right] z
\]

und in ganz gleicher Weise wie in § 33, Ziff. 2

\[
\int \left(\tau_y y + \tau_z z \right) df = M_d
\]

\[
= m \int \left[1 - \left(\frac{2z}{h} \right)^2 \right] y^2 df + n \int \left[1 - \left(\frac{2y}{b} \right)^2 \right] z^2 df,
\]

\[
M_d = \frac{1}{12} m b^3 h + \frac{1}{12} n b h^3 - 4 \left(\frac{m}{h^2} + \frac{n}{b^2} \right) y^2 z^2 df.
\]
Wegen
\[\int y^2 z^2 \, df = \int_{\frac{h}{2}}^{b} y^2 \, dy \int_{\frac{h}{2}}^{b} z^2 \, dz = \frac{1}{144} b^3 h^3 \]
wird
\[M_d = \frac{1}{12} m b^3 h + \frac{1}{12} n b h^3 - \frac{1}{36} \left(\frac{m}{h^2} + \frac{n}{b^2} \right) b^2 h^3 \quad (2) \]

Nun ist
für den Punkt A, d. i. \(y = \frac{b}{2} \) und \(z = 0 \),
\[r_y = r'_a, \]
womit nach der ersten der Gleichungen 1
\[r'_a = m \frac{b}{2} \quad \text{oder} \quad m = \frac{2 r'_a}{b} \]
und
für den Punkt B, d. i. \(y = 0 \) und \(z = \frac{h}{2} \),
\[r_z = r'_b, \]
infolgedessen nach der zweiten der Gleichungen 1
\[r'_b = n \frac{h}{2} \quad \text{oder} \quad n = \frac{2 r'_b}{h} = \frac{2 b}{h^2} r'_a. \]

Hiermit gehen die Gleichungen 1 und 2 über in
\[
\begin{align*}
 r_y &= 2 r'_a \frac{1}{b} \left[1 - \left(\frac{2 z}{h} \right)^2 \right] y, \\
 r_z &= 2 r'_b \frac{1}{h} \left[1 - \left(\frac{2 y}{b} \right)^2 \right] z, \\
 &= 2 r'_a \frac{b}{h^2} \left[1 - \left(\frac{2 y}{b} \right)^2 \right] z,
\end{align*}
\quad (3)
§ 34. Stab von rechteckigem Querschnitt.

beziehungsweise

\[M_d = \frac{2}{9} \tau \alpha b^2 h \quad \ldots \quad \ldots \quad 4) \]

Gleichung 4 führt zu

\[M_d \leq \frac{2}{9} k_d b^2 h \quad \text{oder} \quad k_d \geq \frac{9 M_d}{2 b^2 h} \quad \ldots \quad \ldots \quad 5) \]

Die größte Anstrengung tritt hierbei auf in denjenigen Punkten der Umfangsleitung des Querschnittes, welche der Stabachse am nächsten liegen.

(Vergl. das unter Ziff. 3 Erörterte.)

\[\text{Fig. 5.} \]

Um ein Bild der Spannungsverteilung über den rechteckigen Querschnitt zu erhalten, sind in Fig. 5 die Spannungen für einige Flächenstreifen eingetragen. Es werden dargestellt die Schubspannungen

für die in der Linie CA liegenden Querschnittselemente durch
die wagrechten Ordinaten der Kurve CH,
für die in der Linie CB liegenden Querschnittselemente durch
die senkrechten Ordinaten der Kurve CJ,
für die in der Linie OA liegenden Querschnittselemente durch
die zu OA senkrechten Pfeillinien,
für die in der Linie OB liegenden Querschnittselemente durch
die wagrechten Ordinaten der Geraden OK,
für die in der Linie OC liegenden Querschnittselemente durch
die geneigten Ordinaten der Kurve OMC.

Die letztere Linie folgt aus den Gleichungen 3 unter Beachtung, daß für die Punkte der Diagonale OC

\[\frac{y}{z} = \frac{b}{h} \]

ist. Hiermit ergibt sich dann für die einzelnen in OC gelegenen Flächenelemente

\[t_z : t_y = b : h, \]

d. h. die Schubspannungen sind parallel gerichtet, und

\[t = \sqrt{t_y^2 + t_z^2} \]

\[= 2t_{i\alpha} \left[1 - \left(\frac{2y}{b} \right)^2 \right] \frac{y}{b} \sqrt{1 + \left(\frac{b}{h} \right)^2}. \]

Für

\[y = 0,577 \cdot \frac{b}{2} \]

erlangt t seinen größten Wert.

Im Falle $b = h$, d. i. für den quadratischen Querschnitt, stehen
die Schubspannungen senkrecht auf den Diagonalen.

Hierbei ist im Auge zu behalten, daß diese Schubspannungen
immer paarweise auftreten und deshalb gleichzeitig in der Ebene
des Querschnittes und in senkrecht dazu stehenden Ebenen wirken.

(Vergl. Schlußbemerkung zu § 32.)
Die Beziehungen 3, § 32 (Kreis), 4, § 32 (Kreisring), 7, § 33 (Ellipse), 11, § 33 (Ellipsenring) und 5, § 34 (Rechteck) lassen sich auf die gemeinsame Form

\[M_d \leq \varphi k_d \frac{\Theta}{b} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad 6) \]

bringen, worin bedeutet

\[M_d \] das Moment des drehenden Kräftepaares,
\[\Theta \] das kleinere der beiden Hauptträgheitsmomente,
\[b \] für den Kreis den Halbmesser, für die Ellipse die kleine Halbachse, für das Rechteck die kleinere Seite,
\[k_d \] die zulässige Drehungsanstrengung,
\[\varphi \] einen Zahlenwert, welcher beträgt

für den Vollkreis und den Kreisring mit \[b = \frac{d}{2} \quad \varphi = 2, \]

für die Vollellipse und den Ellipsenring \[\varphi = \frac{8}{3}. \]

für das Rechteck

Auf dieselbe Form, Gleichung 6, läßt sich auch der Ausdruck für das gleichseitige Dreieck

\[M_d = \frac{1}{20} k_d b^{3,1} \]

sowie derjenige für das gleichseitige Sechseck

\[M_d = \frac{1}{1,09} k_d b^{3,1}, \]

worin je \(b \) die Seitenlänge bezeichnet, bringen.

Es ist dann

\[\varphi = 1,385, \]

beziehungsweise

\[\varphi = 1,694. \]

Die Gleichung 6 spricht deutlich aus, daß die Widerstands-
fähigkeit gegenüber Drehungsbeanspruchung von dem
kleineren der beiden Hauptträgheitsmomente bestimmt
wird, daß also das größere nicht in Betracht kommt.

Unter Ziff. 1 erkannten wir, daß die ursprünglich ebenen
Querschnitte des rechteckigen Prisma infolge Einwirkung des
Drehungsmomentes in gekrümmte Flächen übergehen. Für den
Fall, daß der Querschnitt langgestreckt war wie bei Stab Fig. 1
(Taf. XI), fand sich, daß die Strecken, um welche hierbei die
einzelnen, von den Seitenmitten abgelegenen Querschnittselemente
aus der ursprünglichen Querschnittsebene herausgetreten waren,
verhältnismäßig bedeutend ausfielen. (Vergleiche daselbst die
gestrichelte Linie, welche die ursprüngliche Ebene des jetzt ge-
wölbten Querschnittes angibt; das Achsenkreuz ist beiden ge-
meinsam.)

Solange der auf Drehung in Anspruch genommene Körper
durchaus prismatisch ist, hat diese Krümmung der Querschnitte
in der Regel ein bedeutendes Interesse für den Ingenieur nicht').
Ganz anders gestaltet sich jedoch die Sache, sobald diese Voraus-
setzung nicht mehr erfüllt ist.

Handelt es sich beispielsweise um einen Körper, wie in § 35,
Fig. 1, dargestellt, der an seinen Enden Platten trägt, durch welche
die beiden Kräftepaare, die sich an ihm das Gleichgewicht halten,
auf den mittleren prismatischen Teil wirken, so bietet sich da,
wo dieser an die Platte anschließt, der Querschnittskrümmung ein
Hindernis. Insbesondere sind die nach den Stabkanten zu ge-
legenen Fasern, Fig. 1, Taf. XI, gehindert, um den verhältnis-
mäßig bedeutenden Betrag, den die erhabene Wölbung verlangt,
von der Platte sich zurückzuziehen. Infolgedessen entstehen in
allen denjenigen Querschnittselementen, welche unter Einwirkung
des Drehungsmomentes bestrebt sind, ihre Entfernung von der
Grundebene zu vergrößern (sich erhaben zu wölben, d. s. die Recht-
ecksvierrad 1 und 3, Fig. 1), Zugspannungen, während in allen

1) Vergl. Fußbemerkung 1, S. 328.
denjenigen Querschnittspunkten, welche bestrebt sind, den bezeichneten Abstand zu verringern (sich vertieft zu wölbren, d. s. die Rechtecksviertel 2 und 4, Fig. 1), Druckspannungen wachgerufen werden. Sind diese Normalspannungen genügend groß, so kann der Bruch, obgleich die äußeren Kräfte nur ein auf Drehung wirkendes Kräftepaar ergeben, durch Zerreissen der am stärksten gespannten Fasern veranlaßt werden.

Der äußere Zugoder Druckkraft bedarf es nicht, da die Zugspannungen in gewissen Querschnittsteilen (Rechtecksviertel 1 und 3, Fig. 1) durch Druckspannungen in den anderen Querschnittselementen (Rechtecksviertel 2 und 4, Fig. 1) im Gleichgewicht gehalten werden.

In solchen Fällen der mehr oder minder vollständig gehinderten Ausbildung der Querschnittswölbung rücken die gefährdetsten Stellen, welche bei Nichthinderung dieser Ausbildung mit denjenigen Punkten des Querschnittsumfanges zusammenfallen, welche der Stabachse am nächsten liegen, von der letzteren fort; beispielsweise in Fig. 1 von A nach C hin. Bei langgestreckten Querschnitten werden sie sehr rasch von A nach C hin vorwärtschreiten.

Beim quadratischen Querschnitt, Fig. 2 (Taf. XII), bleibt C in der ursprünglichen Querschnittsebene; infolgedessen ist es ausgeschlossen, daß bei Gleichartigkeit des Materiales die größte Anstreichung in oder nahe bei C auftritt. Sie ist — allgemein — da zu suchen, wo die Gesamtanspruchnahme, herrührend von den Schubspannungen, welche durch das Drehungsmoment verursacht werden, und von den Normalspannungen, die infolge der Hinderung der Querschnittswölbung ins Dasein treten, den größten Wert erlangt. Bei dem quadratischen Querschnitt wird sie — soweit dies hier ohne Anstellung besonderer Rechnungen beurteilt werden kann — der Mitte der Seitenflächen viel näher liegen als den Stabkanten. Ihre Bestimmung, welche überdies von dem Grade der Vollständigkeit der mehrfach erwähnten Hinderung der Querschnittskrümmung abhängt, gehört in das Gebiet der zusammen gesetzten Elastizität und Festigkeit.

(Vergl. auch den vorletzten Absatz von § 32 sowie die Bemerkungen zu Gleichung 2, § 31, Ziff. 1.)

Die zur Berechnung von Stäben, welche durch Drehung beansprucht werden, in diesem und den vorhergehenden Paragraphen
aufgestellten Gleichungen sind unter der stillschweigend gemachten Voraussetzung entwickelt, daß die Querschnittswölbung sich ungehindert ausbilden kann\(^1\).

§ 35. Drehungsversuche.

1. Abhängigkeit der Drehungsfestigkeit des Gußeisens von der Querschnittsform.

Diese Abhängigkeit muß bei Gußeisen wegen der Veränderlichkeit des Schubkoeffizienten \(\beta\) in ziemlich bedeutendem Maße vorhanden sein. (Vergl. § 32.)

Verfasser hat nach der bezeichneten Richtung hin eine Anzahl von Versuchen angestellt. Über einen Teil derselben ist in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 140 bis 145 und 162 bis 166 ausführlich berichtet worden\(^2\).

Die je unter einer Bezeichnung aufgeführten Versuchskörper sind aus dem gleichen Material (bei demselben Gusse) hergestellt worden.

Gußeisen A.

Zugstäbe bearbeitet.

Zugfestigkeit \(K_z = \frac{1655 + 1480 + 1601}{3} = 1579\) kg/qcm.

a) Stäbe mit rechteckigem Querschnitt, unbearbeitet.

![Diagram](image)

Fig. 1.

\(^1\) Diese Voraussetzung trifft auch für genau prismatische Stäbe streng nicht zu; denn denken wir uns einen solchen Stab von der Länge \(l\) an den Enden je auf die Erstreckung \(x\) von den beiden Kräftepaaren ergriffen, die sich an ihm das Gleichgewicht halten, so erkennt man, daß für die beiden Stirnflächen des Stabes das verdrehende Moment gleich Null ist und erst zu Ende der Strecke \(x\) die volle Größe erreicht, die es für den mittleren Stabteil von der Länge \(l - 2x\) besitzt. Es besteht somit eine gewisse Hinderung gegenüber der Querschnittswölbung, die sich auf einer Strecke größer als \(x\) geltend machen muß.

\(^2\) Siehe auch „Abhandlungen und Berichte“ 1897, S. 80 u. f.
Fig. 8, § 35.

Fig. 9, § 35.
§ 35. Drehungsversuche.

<table>
<thead>
<tr>
<th>Seitenverhältnis</th>
<th>Durchschnittliche Abmessungen</th>
<th>Drehungsfestigkeit</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>4 Stäbe, $b : h = 1 : 1$</td>
<td>53</td>
<td>3,15</td>
<td>3,20</td>
</tr>
<tr>
<td>4 Stäbe, $b : h = 1 : 2,5$</td>
<td>56</td>
<td>3,13</td>
<td>7,82</td>
</tr>
<tr>
<td>4 Stäbe, $b : h = 1 : 5$</td>
<td>56</td>
<td>3,08</td>
<td>15,07</td>
</tr>
<tr>
<td>3 Stäbe, $b : h = 1 : 9$</td>
<td>54</td>
<td>1,66</td>
<td>15,13</td>
</tr>
</tbody>
</table>

Die Bruchfläche, Fig. 8 (Taf. XIII), läßt vermuten, daß bei den quadratischen Stäben der Bruch, der plötzlich erfolgt, in der Mitte der Seitenfläche oder wenigstens in deren Nähe begonnen habe, wie dies nach § 34, Ziff. 3, der Fall sein soll.

Bei den Stäben mit langgestreckter Form des Querschnittes scheint es dagegen, als ob der Bruch, Fig. 9 (Taf. XIII), welcher immer in der Nähe einer der beiden zum Einlegen in die Prüfungs maschine dienenden Endplatten erfolgte, von außen, d. h. von einer Ecke oder in deren Nähe, seinen Anfang genommen habe.

Jedenfalls ist hieraus zu schließen, daß K_d für die Stäbe mit langgestrecktem Querschnitt zu klein ermittelt wurde. Ferner erkennen wir, als durch den Versuch nachgewiesen, daß ein auf Drehung beanspruchter Körper, dessen Querschnitt in der einen Richtung eine wesentlich größere Erstreckung besitzt als in der anderen, da, wo in Richtung der Stabachse der schwächere prismatische Teil an einen stärkeren anschließt — wie im vorliegenden Falle das rechteckige Prisma an die Endplatten — die Anstrengung keine reine Drehungsbeanspruchung mehr ist, daß vielmehr daselbst auch Normalspannungen auftreten. (Vergl. § 34, Ziff. 3.)
b) Stäbe mit kreisförmigem Querschnitt.

![Diagram of a cylinder with dimensions](image)

Fig. 2.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Durchmesser (d) cm</th>
<th>Drehungsfestigkeit (K_d = \frac{16 M_d}{\pi d^3}) kg/qcm</th>
<th>(\frac{K_d}{K_s})</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Stäbe, unbehandelt</td>
<td>10,23</td>
<td>1618</td>
<td>1,02</td>
<td>Bruch erfolgt plötzlich im prismatischen Teil.</td>
</tr>
<tr>
<td>1 Stab, bearbeitet</td>
<td>9,6</td>
<td>1655</td>
<td>1,05</td>
<td>Desgleichen, siehe Fig. 10 (Taf. XIV).</td>
</tr>
</tbody>
</table>

Von hohem Interesse erscheint die Bruchfläche des linken Stückes der Fig. 10 (Taf. XIV). Deutlich sprechen hier die kleinen, der Längsfuge anhängenden Bruchstücke dafür, daß die Trennung schließlich — nach vorhergegangener Rißbildung unter 45° — durch Abschiebung in angenähert achsialer Richtung erfolgt ist (vergl. Fig. 5, § 32, sowie das in § 32 am Schlusse Bemerkte).

Ein Einfluß der Entfernung der Gußhaut auf die Drehungsfestigkeit kann nicht festgestellt werden, da diese für die drei unbehandelten Stäbe zwischen 1574 und 1683 kg/qcm schwankte.

c) Hohlstäbe mit kreisförmigem Querschnitt, unbehandelt.

![Diagram of a hollow cylinder](image)

Fig. 3.
Fig. 10, § 35.

Fig. 11, § 35.
§ 35. Drehungsversuche.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Durchmesser d</th>
<th>d_0</th>
<th>Drehungsfestigkeit $K_d = \frac{16 \cdot M_d}{\pi \cdot d^4 - d_0^4} \frac{d}{\text{kg/qcm}}$</th>
<th>$\frac{K_d}{K_z}$</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Stäbe</td>
<td>10,2 cm</td>
<td>6,97 cm</td>
<td>1297</td>
<td>0,82</td>
<td>Bruch erfolgt plötzlich im prismatischen Teil.</td>
</tr>
</tbody>
</table>

Hinsichtlich der Bruchfläche vergl. die zu „Güßeisen B“ gehörige Fig. 11 (Taf. XIV).

Die Drehungsfestigkeit nähert sich dem Werte, welcher nach Gleichung 6, § 31, zu erwarten ist, entsprechend dem Umstande, daß die Drehungsbeanspruchung hier der einfachen Schubbeanspruchung ziemlich nahe gekommen ist. Für $d_0 = d$ würde die Drehungsbeanspruchung vollständig dieselbe sein wie die Inanspruchnahme auf Schub.

d) Hohlstäbe mit quadratischem Querschnitt, unbehandelt.

Fig. 4.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Seitenlänge a</th>
<th>a_0</th>
<th>Drehungsfestigkeit $K_d = 4,5 \cdot \frac{M_d}{a^4 - a_0^4} \frac{a}{\text{kg/qcm}}$</th>
<th>$\frac{K_d}{K_z}$</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Stäbe</td>
<td>6,21 cm</td>
<td>3,16 cm</td>
<td>1788</td>
<td>1,13</td>
<td>Bruch erfolgt plötzlich im prismatischen Teil, Fig. 12 (Taf. XV).</td>
</tr>
</tbody>
</table>

Die Bruchfläche, Fig. 12 (Taf. XV), berechnigt zur Vermutung, daß der Bruch in der Mitte der Seite begonnen habe.

Vergleicht man die Drehungsfestigkeit bei vollquadratischem Querschnitt (a) mit derjenigen bei hohlquadratischem, so findet sich

$$2228 : 1788 = 1,25 : 1.$$
Derselbe Vergleich für Vollkreis (b) mit Kreisring (c) ergibt
\[1618 : 1297 = 1,25 : 1, \]
also dasselbe.

Beide Vergleiche lehren, daß das nach der Stabachse zu
gelegene Material (Gußeisen) bei der Drehung durchaus
nicht so schlecht ausgenützt wird, wie man dies an-
zunehmen pflegt.

Nach § 32 war, da für Gußeisen der Schubkoeffizient \(\beta \) mit
zunehmender Spannung wächst, dieses Ergebnis zu erwarten.

Es entspricht dies ganz dem Ergebnisse, zu welchem die Er-
örterungen in § 20, Ziff. 4, sowie die Versuche § 22, Ziff. 2, bei
Biegungsbeanspruchung des Gußeisens führten.

e) Stäbe mit \(\square \)-förmigem Querschnitt, unbearbeitet.

\[\alpha \) Verhältnis \(b : h = \sim 1 : 1,5. \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment (M_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) cm</td>
<td>(h) cm</td>
</tr>
<tr>
<td>1</td>
<td>10,3</td>
<td>15,1</td>
</tr>
<tr>
<td>2</td>
<td>10,25</td>
<td>15,15</td>
</tr>
<tr>
<td>3</td>
<td>10,3</td>
<td>15,2</td>
</tr>
</tbody>
</table>

Der Bruch beginnt damit, daß gleichzeitig oder unmittelbar
aufeinander folgend die beiden Querrippen von außen einreißen,
§ 35. Drehungsversuche.

und zwar die eine bei \(m\), die andere bei \(n\), also diametral gegenüberliegend. Die Drehrichtung des Momentes ist hierbei derart, daß — von Platte \(A\) nach Platte \(B\) gesehen — \(A\) in der Richtung des Uhrzeigers verdreht wird.

Die oben eingetragenen Werte von \(M_d\) sind die Drehungs- momente, welche sich unmittelbar vor diesem Einriß der Querrippen ergaben. Sobald letzteres erfolgt, sinkt die Schale der Kraftwage, entsprechend einer Verminderung des Momentes, welches auf den Stab wirkt. Für den Stab No. 3 wurde diese Verminderung bestimmt, weshalb dessen Verhalten noch kurz beschrieben werden soll.

Stab No. 3.

Bei \(M_d = 35\,500\) kg·cm reißen die Querrippen an den zwei Stellen \(m\) und \(n\) von außen ein, das Drehungsmoment sinkt auf \(25\,250\) kg·cm. Unverletzt ist in dem Querschnitt bei \(m\), beziehungsweise \(n\) noch der innere Teil der nur außen (auf reichlich die Hälfte) gerissenen Querrippe, der Steg und die andere Querrippe bei \(o\), beziehungsweise \(p\). Bei fortgesetzter Verdrehung steigt das Moment auf \(35\,250\) kg·cm und nimmt dann wieder ab. Der Bruch der Querrippe bei \(n\) beginnt sich in den Steg hinein zu erstrecken, schließlich bricht dieser und bald auch die andere Querrippe bei \(p\).

\[\beta)\] Verhältnis \(b:h \approx 1:3.\]

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) (\text{cm})</td>
<td>(h) (\text{cm})</td>
</tr>
<tr>
<td>1</td>
<td>5,2</td>
<td>15,2</td>
</tr>
<tr>
<td>2</td>
<td>5,2</td>
<td>15,2</td>
</tr>
<tr>
<td>3</td>
<td>5,2</td>
<td>15,3</td>
</tr>
</tbody>
</table>

Bruch erfolgt in ähnlicher Weise, wie unter \(\alpha\) erörtert.

Bei dem Drehungsmoment \(M_d\) reißen die Querrippen an zwei einander diametral gegenüberliegenden Stellen (\(m\) und \(n\), Fig. 5) von außen ein, das Drehungsmoment sinkt ein wenig (z. B. bei
No. 3 von 24000 auf 23000, also um weit weniger als beim Einreißen der Stäbe unter α, für welche die Breite b rund noch einmal so groß ist). Mit Wiederaufnahme der Verdrehung steigt es auf $M'_d > M_d$, den Bruch hebeiführend. Der Bruch des Steges, welcher letzterer noch unterstützt wird durch die zweite unverletzte Querrippe desselben Querschnittes, fordert also ein etwas größeres Drehungsmoment, als zum Einreißen der einen Querrippe des unverletzten Stabes nötig ist; der Stab trägt demnach mit eingerissener Querrippe mehr wie im unverletzten Zustande.

Für den Versuch No. 1 unter α würde Gleichung 6, § 34, mit $q = \frac{8}{3}$ und bei Ersetzung von k_d durch K_d liefern

$$K_d = \frac{3}{8} \frac{M_d}{\Theta} b = \frac{3}{8} \cdot \frac{34000}{528} \cdot 10.3 = \sim 290 \text{ kg/qcm}.$$

Für den Versuch No. 1 unter β würde die Gleichung 6, § 34, ergeben

$$K_d = \frac{3}{8} \frac{M_d}{\Theta} b = \frac{3}{8} \cdot \frac{27250}{70.5} \cdot 5.2 = \sim 880 \text{ kg/qcm}.$$

Werden diese beiden für K_d erlangten Werte mit der Drehungsfestigkeit rechteckiger Stäbe verglichen (a), so ergibt sich, daß die Gleichung 6, § 34, für Körper mit Querschnitten der hier vorliegenden Art unbrauchbar ist; denn um auf eine Spannung zu gelangen, wie sie der Drehungsfestigkeit rechteckiger Stäbe entspricht, müßte q im ersteren Falle (290 kg/qcm) 8 mal, im letzteren (880 kg/qcm) dagegen reichlich 2 $\frac{1}{2}$ mal so groß genommen werden.

Würde man beim Stab No. 1 unter α die Querrippen umlegen und an den Steg anschließen, so daß ein rechteckiger Querschnitt erhalten würde von der Höhe $h + 2b_0 = 15.1 + 2 \cdot 8.6 = 32.3$ cm bei einer durchschnittlichen Breite von

$$\frac{h (b - b_0) + 2b_0 (h - b_0)}{h + 2b_0} = \frac{15.1 \cdot 1.7 + 17.2 \cdot 1.6}{32.3} = 1.64 \text{ cm},$$
§ 35. Drehungsversuche.

so wäre mit \(K_d = 2500 \text{ kg/qcm} \) (wie unter a für rechteckige Stäbe von 15,1 cm Höhe und 1,66 cm Stärke gefunden) nach Gleichung 5, § 34, auf ein Drehungsmoment von

\[
M_d = \frac{2}{9} b^2 h K_d = \frac{2}{9} 1,64^2 \cdot 32,3 \cdot 2500 \approx 48200 \text{ kg cm}
\]

errechnet. Das würde

\[
100 \frac{48200 - 34000}{34000} = 42\%
\]

mehr sein, als der rippenförmige Querschnitt tatsächlich verträgt.

Wird die Festigkeit des Stabes No. 1 unter \(\beta \) in Vergleich gesetzt mit der Widerstandsfähigkeit, welche sein Steg allein besitzen würde, d. h. mit

\[
M_d = \frac{2}{9} (5,2 - 3,5)^2 \cdot 15,2 \cdot 2500 \approx 24400 \text{ kg cm},
\]

so findet sich, daß der Stab No. 1 unter \(\beta \) nicht wesentlich mehr trägt (\(M_d = 27250 \text{ kg cm} \)) als der Steg für sich ohne Querrippen.

Wir erkennen hieraus, daß die untersuchten Stäbe mit \(\Gamma \)-förmigem Querschnitt gegenüber Drehungsbeanspruchung verhältnismäßig wenig widerstandsfähig sind. (Vergl. unter Gußeisen B, d.)

f) Stäbe mit \(\Gamma \)-förmigem Querschnitt, unbehandelt.
\(a)\) Verhältnis \(b : h = \sim 1 : 1,5.\)

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) cm</td>
<td>(h) cm</td>
</tr>
<tr>
<td>1</td>
<td>10,1</td>
<td>15,1</td>
</tr>
<tr>
<td>2</td>
<td>10,2</td>
<td>15,2</td>
</tr>
<tr>
<td>3</td>
<td>10,3</td>
<td>15,2</td>
</tr>
</tbody>
</table>

Bruch gesund.

Bei \(M_d\) reißen gleichzeitig oder unmittelbar aufeinander folgend die Querrippen an 4 Stellen von außen ein. Ist der Drehungssinn des Momentes derart, daß beim Sehen von der Platte \(A\) gegen die Platte \(B\) hin \(A\) in der Richtung des Uhrzeigers gegenüber \(B\) verdreht wird, so reißt die untere Rippe rechts bei \(n\), links bei \(u\), die obere rechts bei \(m\), links bei \(v\) von außen ein. Mit diesem Einreißen sinkt das Moment nur sehr wenig. Bei Fortsetzung des Versuchs steigt das Moment auf \(M'_d\), welches wesentlich größer ist als \(M_d\), führt in dieser Größe den Bruch des Steges und damit des Stabes herbei. Derselbe trägt demnach mit eingerissenen Querrippen bedeutend mehr wie im unverletzten Zustand.

\(\beta)\) Verhältnis \(b : h = \sim 1 : 3.\)

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) cm</td>
<td>(h) cm</td>
</tr>
<tr>
<td>1</td>
<td>5,0</td>
<td>15,1</td>
</tr>
<tr>
<td>2</td>
<td>5,0</td>
<td>15,2</td>
</tr>
<tr>
<td>3</td>
<td>5,0</td>
<td>15,1</td>
</tr>
</tbody>
</table>

Bruchfläche bei 1 und 2 gesund, bei 3 gesund bis auf eine unbedeutende Stelle.
§ 35. Drehungsversuche.

Bruch erfolgt in ganz ähnlicher Weise, wie unter α erörtert. Bei M_d beginnt das Einreißen der Querrippen, M'_d bringt den Steg und damit den Stab zum Bruche.

$$y) \text{ Verhältnis } b : h = \sim 1 : 6.$$

<table>
<thead>
<tr>
<th>No.</th>
<th>b cm</th>
<th>h cm</th>
<th>b'_0 cm</th>
<th>h'_0 cm</th>
<th>M_d kg cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,5</td>
<td>15,1</td>
<td>0,9</td>
<td>12,0</td>
<td>25 250</td>
</tr>
</tbody>
</table>

Bruch erfolgt plötzlich. Bruchfläche bis auf eine sehr kleine Stelle gesund.

Wird K_d auf Grund der Gleichung 6, § 34, mit $\varphi = \frac{8}{3}$ für die Stäbe No. 3 unter α, No. 1 unter β und No. 1 unter γ berechnet, so findet sich

$$K_d = \frac{3}{8} \frac{46500}{295} \cdot 10,3 = 609 \text{ kg/qcm},$$

$$K_d = \frac{3}{8} \frac{32500}{37} \cdot 5 = 1641 \text{ kg/qcm},$$

$$K_d = \frac{3}{8} \frac{25250}{8,13} \cdot 2,5 = 2912 \text{ kg/qcm}.$$

Aus der Verschiedenartigkeit und der absoluten Größe dieser Werte erkennen wir, daß auch für I-Querschnitte die Gleichung 6, § 34, nicht verwendbar erscheint.

Würde man die Querrippen umlegen und an den Steg anschließen, so daß je ein rechteckiger Querschnitt von der Höhe $15,2 + 2 \cdot 8,7 = 32,6$ cm, der Breite 1,6 cm, bezw.

- $15,1 + 2 \cdot 3,4 = 21,9$
- $15,1 + 2 \cdot 0,9 = 16,9$

sich ergäbe, so wäre mit $K_d = 2500$ kg/qcm nach Gleichung 5, § 34, auf ein Drehungsmoment zu rechnen von 22
V. Drehung.

\[M_d = \frac{2}{9} \, b^2 \, h \, K_d = \frac{2}{9} \cdot 1,6^2 \cdot 32,6 \cdot 2500 = \sim 46360 \, \text{kg} \cdot \text{cm}, \]

bezw.

\[M_d = \frac{2}{9} \cdot 1,6^2 \cdot 21,9 \cdot 2500 = \sim 31150 \, \text{kg} \cdot \text{cm}, \]

bezw.

\[M_d = \frac{2}{9} \cdot 1,6^2 \cdot 16,9 \cdot 2500 = \sim 24040 \, \text{kg} \cdot \text{cm}. \]

Der Versuch ergab

46 500, bezw. 32 500, bezw. 25 250,

also nur wenig hiervon verschieden, so daß ausgesprochen werden darf, daß die untersuchten I-förmigen Querschnitte hinsichtlich des Widerstandes gegen Bruch durch Drehung nahezu gleichwertig erscheinen mit rechteckigen Querschnitten, deren Breite gleich der Steg- und gleich der Rippenstärke \(s \) und deren Höhe gleich der Summe \(h + 2 \, b_0 \), d. h.

\[M_d = \frac{2}{9} \, K_d \, s^2 (h + 2 \, b_0). \]

1)

g) Stäbe mit kreuzförmigem Querschnitt, unbehandelt.

![Diagram](image)

Fig. 7.

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Trägheitsmoment</th>
<th>Bruchmoment</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s)</td>
<td>(h)</td>
<td>(\Theta)</td>
<td>(M_d)</td>
</tr>
<tr>
<td>1</td>
<td>2,14</td>
<td>15,2</td>
<td>637</td>
<td>72 500</td>
</tr>
<tr>
<td>2</td>
<td>2,14</td>
<td>15,1</td>
<td>616</td>
<td>73 750</td>
</tr>
</tbody>
</table>

Der Bruch erfolgt in beiden Fällen plötzlich.
§ 35. Drehungsversuche.

Über die Bruchfläche vergleiche Fig. 13 (Taf. XV). Wie ersichtlich, entstehen je bei dem Bruche 6 Stücke: die beiden Endkörper sowie vier Dreiecke, welche aus den Rippen herausbrechen.

Die Gleichung 6, § 34, würde mit \(\varphi = \frac{8}{3} \) liefern

\[
K_d = \frac{\frac{3}{8} \frac{72500}{637}}{15,2} = 719 \text{ kg/qcm},
\]

\[
K_d = \frac{\frac{3}{8} \frac{73750}{616}}{15,1} = 676 \text{ kg/qcm},
\]

also viel zu kleine Werte.

Aber auch eine einfache Überlegung zeigt, daß die Gleichung 6, § 34, für Stäbe mit kreuzförmigem Querschnitt nicht brauchbar sein kann.

Ein kreuzförmiger Querschnitt mit verhältnismäßig geringer Rippenstärke \(s \) kann in der Weise entstanden gedacht werden, daß man zwei gleiche rechteckige Querschnitte sich rechtwinklig kreuzend aufeinander legt. Aus der Natur der Inanspruchnahme auf Drehung folgt dann ohne weiteres, daß der Widerstand dieses kreuzförmigen Querschnittes doppelt so groß sein muß wie derjenige jedes der beiden Rechtecke, sofern zunächst davon abgesehen wird, daß sich in der Mitte Teile der beiden Rechtecke decken. Nachdem nun für rechteckigen Querschnitt die Gleichung

\[
M_d = \frac{2}{9} K_d b^2 h
\]

als zutreffend erkannt worden ist, nach welcher die Breite \(b \) des Querschnittes das Drehungsmoment im quadratischen Verhältnisse beeinflußt, während die Höhe nur mit der ersten Potenz wirksam ist, so ergibt sich auf Grund der eben angestellten Erwägung für den kreuzförmigen Querschnitt

\[
M_d = \frac{2}{9} K_d s^2 h + \frac{2}{9} K_d s^2 (h - s),
\]

\[
= \frac{2}{9} K_d s^2 (2h - s)
\]

\[
= \frac{2}{9} K_d s^2 h \left(2 - \frac{s}{h} \right)
\]

\[\text{22}^*\]
d. h. wie für einen rechteckigen Querschnitt, dessen Breite gleich der Rippenstärke und dessen Höhe durch Aneinandersetzen der Rippen erhalten wird.

Zur Prüfung der so gewonnenen Gleichung 2 ziehen wir die Versuchsergebnisse heran. Dieselben liefern für No. 1

\[
K_d = 4.5 \frac{72500}{2.14^2(2 \cdot 15.2 - 2.14)} = 2520 \text{ kg/qcm},
\]

für No. 2

\[
K_d = 4.5 \frac{73750}{2.11^2(2 \cdot 15.1 - 2.11)} = 2655 \text{ kg/qcm},
\]

Durchschnitt \[2587 \text{ kg/qcm}.

Das sind Werte, die denjenigen entsprechen, welche unter a für rechteckigen Querschnitt erhalten worden sind. Die auf dem Wege einfacher Überlegung gewonnene Gleichung 2 liefert demnach Zahlen, welche mit den Versuchsergebnissen in guter Übereinstimmung stehen.

Gußeisen B.

a) Stäbe mit quadratischem Querschnitt.

S. Fig. 1, \(l = 530\).

\(\alpha)\) **Unbearbeitet.**

<table>
<thead>
<tr>
<th>No.</th>
<th>Breite (b)</th>
<th>Höhe (h)</th>
<th>Bruchmoment (M_d)</th>
<th>Drehungsfestigkeit (K_d = 4.5 \frac{M_d}{b^2 h})</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,18</td>
<td>3,32</td>
<td>20 750</td>
<td>2776</td>
<td>Bruch gesund.</td>
</tr>
<tr>
<td>2</td>
<td>3,19</td>
<td>3,28</td>
<td>19 000</td>
<td>2561</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3,30</td>
<td>3,47</td>
<td>21 250</td>
<td>2530</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3,10</td>
<td>3,26</td>
<td>17 500</td>
<td>2514</td>
<td>Bruch gesund bis auf eine blasige Stelle.</td>
</tr>
</tbody>
</table>

Durchschnitt \(3,22 \cdot 3,34\) \(2598\)
Aus den hierbei erhaltenen Bruchstücken wurden 3 Zugstäbe herausgearbeitet.

<table>
<thead>
<tr>
<th>No.</th>
<th>Durchmesser d cm</th>
<th>Querschnitt $\frac{\pi}{4} d^2$ qcm</th>
<th>Bruchbelastung Z kg</th>
<th>Zugfestigkeit $\frac{Z}{\frac{\pi}{4} d^2}$ kg/qcm</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,38</td>
<td>4,45</td>
<td>7860</td>
<td>1766</td>
<td>Bruch gesund.</td>
</tr>
<tr>
<td>2</td>
<td>2,37</td>
<td>4,41</td>
<td>7150</td>
<td>1621</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2,38</td>
<td>4,45</td>
<td>7340</td>
<td>1649</td>
<td>-</td>
</tr>
</tbody>
</table>

Durchschnitt 1679

$K_d : K_z = 2598 : 1679 = 1,55 : 1.$

β) Bearbeitet.

<table>
<thead>
<tr>
<th>No.</th>
<th>Quadratseite b cm</th>
<th>Bruchmoment M_d kg·cm</th>
<th>Drehungsfestigkeit $K_d = 4,5 \frac{M_d}{b^2}$ kg/qcm</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,00</td>
<td>17 250</td>
<td>2875</td>
<td>Bruch gesund.</td>
</tr>
<tr>
<td>2</td>
<td>3,03</td>
<td>16 750</td>
<td>2710</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3,22</td>
<td>21 000</td>
<td>2830</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3,20</td>
<td>19 250</td>
<td>2643</td>
<td>Bruch gesund bis auf eine blasige Stelle.</td>
</tr>
</tbody>
</table>

Durchschnitt 2764

Aus Rohgußstäben von 38 bis 39 mm Seite gehobelt.

$K_d : K_z = 2764 : 1679 = 1,55 : 1.$

Hierarchisch erscheint die Drehungsfestigkeit der bearbeiteten, also von der Gußhaut befreiten Stäbe um

$$100 \frac{2764 - 2598}{2598} = 6,4 \%$$

größer als diejenige der unbearbeiteten Stäbe von quadratischem Querschnitt.
Die Verdrehung, namentlich auch die bleibende, welche der bearbeitete Stab bis zum Bruche erfährt, ist wesentlich größer als diejenige des unbehandelten.
(Vergl. § 22, Ziff. 3, das Folgende unter b, β, sowie in diesem Paragraphen unter „Gußeisen A“ b Schlusszeil.)

b) Hohlstäbe mit kreisförmigem Querschnitt.

S. Fig. 3.

a) Unbearbeitet.

<table>
<thead>
<tr>
<th>No.</th>
<th>Durchmesser</th>
<th>Bruchmoment</th>
<th>Drehnungsfestigkeit</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
<td>d_0</td>
<td>M_d</td>
<td>$K_d = \frac{16 \ M_d}{\pi \ d^4 - d_0^4}d$</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
<td>kg·cm</td>
<td>kg/qcm</td>
</tr>
<tr>
<td>1</td>
<td>10,2</td>
<td>7,0</td>
<td>231 500</td>
<td>1428</td>
</tr>
<tr>
<td>2</td>
<td>10,25</td>
<td>6,9</td>
<td>243 750</td>
<td>1451</td>
</tr>
</tbody>
</table>

Durchschnitt | 1439

$K_d : K_z = 1439 : 1679 = 0,86 : 1.$

β) Außen abgedreht.

Ursprünglicher Durchmesser 102 mm.

<table>
<thead>
<tr>
<th>No.</th>
<th>Durchmesser</th>
<th>Bruchmoment</th>
<th>Drehnungsfestigkeit</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
<td>d_0</td>
<td>M_d</td>
<td>$K_d = \frac{16 \ M_d}{\pi \ d^4 - d_0^4}d$</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
<td>kg·cm</td>
<td>kg/qcm</td>
</tr>
<tr>
<td>1</td>
<td>9,65</td>
<td>7</td>
<td>173 500</td>
<td>1360</td>
</tr>
</tbody>
</table>

$K_d : K_z = 1360 : 1679 = 0,81 : 1.$
Hiernach würde der bearbeitete Hohlzylinder eine etwas geringere Drehungsfestigkeit aufweisen als die unbearbeiteten; doch kann ein Urteil hierüber nicht gefällt werden, da der Einfluß ungleicher Wandstärke (einerseits reichlich 12, andererseits reichlich 14 mm) das Ergebnis trübt, und da überdies durch Verringerung des äußeren Durchmessers das Verhältnis $d_o : d$ größer geworden ist. (Vergl. unter Gußeisen A, c letzten Absatz sowie Bemerkung 1 am Schlusse des § 36.)

c) Stäbe mit _-förmigem Querschnitt, unbearbeitet.

![Fig. 14.](image)

\[a) \text{Seitenverhältnis } b : h = 1 : 1. \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment M_d</th>
<th>Drehungsfestigkeit $K_d = \frac{4.5}{s^2 (b+h-s)}$</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (cm)</td>
<td>h (cm)</td>
<td>s (cm)</td>
<td>M_d (kg·cm)</td>
</tr>
<tr>
<td>1</td>
<td>10,2</td>
<td>10,4</td>
<td>2,15</td>
<td>47250</td>
</tr>
<tr>
<td>2</td>
<td>10,2</td>
<td>10,2</td>
<td>2,15</td>
<td>47250</td>
</tr>
</tbody>
</table>

Durchschnitt 2507

Bruch erfolgt plötzlich, ein dreieckiges Stück in der Nähe einer der beiden Endplatten bricht heraus.

(Vergl. die Versuche unter „Gußeisen A", g, Fig. 13, Taf. XV.)
\(\beta \) Seitenverhältnis \(b : h = 0,6 : 1. \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{No.} & \text{Abmessungen} & \text{Bruch-} & \text{Drehungs-} & \text{Bemerkungen} \\
 & b & h & s & \text{moment} & \text{festigkeit} & \\
 & \text{cm} & \text{cm} & \text{cm} & M_d & K_d = 4,5 \frac{M_d}{s^2(b+h-s)} & \text{kg/qcm} \\
\hline
1 & 6,3 & 10,4 & 2,15 & 37750 & 2526 & \text{Bruch gesund.} \\
2 & 6,0 & 10,3 & 2,10 & 35000 & 2515 & \text{Desgl. bis auf eine unerhebliche Stelle.} \\
\hline
\text{Durchschnitt} & & & & & 2520 & \\
\hline
\end{array}
\]

Bruch erfolgt plötzlich; ein Dreieck bricht aus wie unter \(\alpha \).

\(\gamma \) \(b = s \), Querschnitt: Rechteck.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{No.} & \text{Abmessungen} & \text{Bruch-} & \text{Drehungs-} & \text{Bemerkungen} \\
 & b & h & \text{moment} & \text{festigkeit} & \\
 & \text{cm} & \text{cm} & M_d & K_d = 4,5 \frac{M_d}{b^2 h} & \text{kg/qcm} \\
\hline
1 & 2,00 & 10,3 & 24500 & 2700 & \text{Bruch gesund bis auf eine sehr kleine Stelle.} \\
2 & 2,02 & 10,35 & 24500 & 2611 & \text{Desgl.} \\
3 & 2,02 & 10,35 & 25250 & 2679 & \text{-} \\
\hline
\text{Durchschnitt} & & & & 2663 & \\
\hline
\end{array}
\]

Bruch erfolgt plötzlich in der Nähe einer der beiden Endplatten.

\[K_d : K_s = 2663 : 1679 = 1,59 : 1. \]

Werden die unter \(\alpha \) und \(\beta \) auf Grund der Gleichung

\[K_d = 4,5 \frac{M_d}{s^2(b+h-s)} \quad . \quad . \quad . \quad 3) \]
erhaltenen Drehungsfestigkeiten verglichen mit den unter γ erzielten, so ergibt sich das Mittel aus den ersteren allerdings um
\[100 \frac{2663 - 0,5 \times (2507 + 2520)}{2663} = 5,7\% \]
geringer. Dieser Unterschied ist aber verhältnismäßig so gering, daß die Gleichung 3, welche auf dieselbe Weise wie Gleichung 1 gebildet wurde, als brauchbare Ergebnisse liefernd bezeichnet werden muß. Hierbei wird allerdings festzuhalten sein, daß die Rippenstärke wenigstens \(\frac{1}{5} \) der Höhe beträgt.

d) Stäbe mit \(\square \)-förmigem Querschnitt, unbehandelt.

Fig. 5.

Die untersuchten Stäbe unterscheiden sich von den Prismen, welche aus dem Gußeisen A gefertigt worden waren, und über deren Prüfungsergebnisse dort unter e) berichtet wurde, dadurch, daß hier die Rippen- und Stegstärke verhältnismäßig größer ist.

\[a) \text{ Höhe } b_0 \text{ der Querrippen gleich der doppelten Rippenstärke.} \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment (M_d)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b) cm</td>
<td>(h) cm</td>
<td>(b_0) cm</td>
</tr>
<tr>
<td>1</td>
<td>6,1</td>
<td>10,2</td>
<td>4,0</td>
</tr>
<tr>
<td>2</td>
<td>6,2</td>
<td>10,3</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Der Bruch beginnt damit, daß gleichzeitig oder unmittelbar aufeinander folgend die beiden Querrippen von außen einreißen, und zwar die eine bei \(m \), die andere bei \(n \), Fig. 5, also diametral gegenüber liegend.

Wird nach dem Einreißen der Rippen der Stab weiter verdreht, so setzt sich der Riß durch den Steg hindurch fort bei
nahezu derselben Belastung, welche das Einreißen der Querrippen herbeiführte.

β) Höhe b_0 der Querrippen gleich der Rippenstärke.

<table>
<thead>
<tr>
<th>No.</th>
<th>Abmessungen</th>
<th>Bruchmoment M_d</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (cm)</td>
<td>h (cm)</td>
<td>b_0 (cm)</td>
</tr>
<tr>
<td>1</td>
<td>4,1</td>
<td>10,1</td>
<td>2,1</td>
</tr>
<tr>
<td>2</td>
<td>4,2</td>
<td>10,0</td>
<td>2,05</td>
</tr>
</tbody>
</table>

Bruch erfolgt plötzlich an den Enden.
Die Stäbe unter α mit $b_0 = \sim 4$ cm halten hiernach nicht viel mehr als diejenigen unter β mit $b_0 = \sim 2$ cm.

Die Prüfung der Ergebnisse auf Grund der Gleichung

$$K_d = 4,5 \frac{M_d}{s^2 (h + 2b_0)} , \quad \ldots \ldots \quad 4)$$

worin

s die mittlere Steg- und Rippenstärke bezeichnet,

führt zu folgenden Werten, wenn hierbei für s die Stegstärke gesetzt wird,

1 α) $K_d = 4,5 \frac{38 500}{2,1^2 (10,2 + 2 \cdot 4)} = 2159$ kg/qcm,

2 α) $K_d = 4,5 \frac{39 000}{2,1^2 (10,3 + 2 \cdot 4,1)} = 2151$ kg/qcm,

Durchschnitt 2155 kg/qcm.

1 β) $K_d = 4,5 \frac{34 750}{2^2 (10,1 + 2 \cdot 2,1)} = 2734$ kg/qcm,

2 β) $K_d = 4,5 \frac{36 250}{2,15^2 (10 + 2 \cdot 2,05)} = 2502$ kg/qcm,

Durchschnitt 2618 kg/qcm.
§ 35. Drehungsversuche.

Der für die Stäbe 1 \(\alpha \) und 2 \(\alpha \) erhaltene Mittelwert von 2155 kg/qcm bleibt um

\[
100 \frac{2663 - 2155}{2663} = \sim 19 \%
\]

unter der Drehungsfestigkeit der Stäbe mit rechteckigem Querschnitt \((c, \gamma) \), während der Durchschnittswert für die Stäbe 1 \(\beta \) und 2 \(\beta \) nur um

\[
100 \frac{2663 - 2618}{2663} = \sim 1,7 \%
\]
davon abweicht.

Der Widerstand, welchen die Stäbe unter \(\beta \) dem Bruche durch Drehung entgegensetzen, ist demnach so groß wie für einen Stab mit rechteckigem Querschnitt, dessen Breite gleich dem Mittel aus der Steg- und der Rippenstärke und dessen Höhe gleich \(h + 2 b_0 \). Die Stäbe unter \(\alpha \) dagegen leisten einen wesentlich geringeren Widerstand.

Hieraus und in Erwägung des bei dem Gußeisen \(A \) unter e) gefundenen Ergebnisses schließen wir: Wenn Stäbe mit \(\square \)-förmigem Querschnitt gegenüber Drehungsbeanspruchung widerstandsfähig sein sollen, so müssen der Steg und die Rippen (Flanschen) verhältnismäßig kräftig und überdies die Höhe \(b_0 \) der letzteren gering gehalten werden. Dann erreicht die Widerstandsfähigkeit diejenige eines rechteckigen Stabes, dessen Breite gleich der Steg- und Rippenstärke \(s \) und dessen Höhe gleich \(h + 2 b_0 \) ist.

C. Zusammenstellung der Drehungsfestigkeit für die Querschnittsgrundformen des Kreises und des Rechteckes.

Zugfestigkeit des Gußeisens \(A \) 1579 kg/qcm

\(- \quad - \quad - \quad B \) 1679 kg/qcm.
2. Drehungswinkel.

In dieser Hinsicht liegen eine größere Anzahl von Versuchen Bauschingers vor.
Zivilingenieur 1881, S. 115 u. f.

Bauschinger hatte sich die Aufgabe gestellt, die von de Saint-Venant herrührende Gleichung

$$\vartheta = \psi M_d \frac{\Theta}{j^2} \beta \ldots \ldots \ldots \ldots \ldots \ldots 5)$$

zu prüfen. In derselben haben \(\vartheta M_d \frac{\Theta}{j^2} \) und \(\beta \) die unter V, S. 302 angegebene Bedeutung, während \(\psi \) einen Koeffizienten bezeichnet, welcher rechnungsmäßig betragen soll\(^1\))

für den Kreis und die Ellipse \(\psi = 4 \pi^2 = 39,5 \),

für das Rechteck, wenn \(h : b = 1 : 1 \), \(\psi = 42,68 \),

- \(h : b = 2 : 1 \), \(\psi = 42,0 \),

- \(h : b = 4 : 1 \), \(\psi = 40,2 \),

- \(h : b = 8 : 1 \), \(\psi = 38,5 \),

\(^1\) Comptes rendus 1878, t. LXXXVII, S. 893 u. f.
- 1879, t. LXXXVIII, S. 143.
§ 35. Drehungsversuche.

für das gleichseitige Dreieck \(\psi = 45^\circ \),
für das regelmäßige Sechseck \(\psi = 41^\circ \),
für den Kreisausschnitt, wenn der Zentriwinkel
\[45^\circ, \quad \psi = 42,9^\circ, \]
\[90^\circ, \quad \psi = 42,4^\circ, \]
\[180^\circ, \quad \psi = 40,8^\circ. \]

Wird das gleichseitige Dreieck außer acht gelassen, so unterscheiden sich die Werte von \(\psi \) nicht bedeutend, infolgedessen bereits de Saint-Venant für \(\psi \) den abgerundeten Mittelwert 40 vorgeschlagen hat.

Bauschinger ließ 5 Paar Probestücke aus Gußeisen, je von 1 m Länge, herstellen, und zwar:

a) 2 Stäbe von kreisförmigem Querschnitt,
b) 2 - - elliptischem \(a : b = \sim 2 : 1, \)
c) 2 - - quadratischem

d) 2 - - rechteckigem \(h : b = \sim 2 : 1, \)
e) 2 - -

Gleichung 5 ist auch auf andere Querschnitte angewendet worden, wohl infolge des Umstandes, daß de Saint-Venant von ihr sagt: „La formule peut être appliquée non seulement à des sections elliptiques, mais à des sections de toute forme, en faisant varier fort peu la fraction que nous avons appelée \(\psi^2 \). Das kann ohne Nachweis im einzelnen Falle zu großen Fehlern führen. So ergibt sich beispielsweise für den kreisförmigen Hohlzylinder mit einer in Verhältnis zum Durchmesser geringen Wandstärke bei Einführung der Bezeichnungen S. 370 u. 371

\[\varepsilon' = \frac{\pi}{4} d_m^3 s, \quad f = \pi d_m s, \]

folglich nach Gleichung 5, wenn \(\psi = 4 \pi^2 \) gesetzt wird,

\[g = \frac{1}{\pi} M_d \beta \frac{1}{d_m^2 s}, \]

während Gleichung 6, § 32 liefert

\[g = \frac{4}{\pi} M_d \beta \frac{1}{d_m^3 s}, \]

Beispielsweise findet sich für \(d_m = 20 \) cm, \(s = 1 \) cm

nach Gleichung 5a

\[g = \frac{1}{\pi} M_d \beta \frac{1}{20}, \]

nach Gleichung 5b

\[g = \frac{1}{\pi} M_d \beta \frac{1}{2000}, \]

d. i. im ersteren Falle 100 mal mehr!

Gleichung 5 gilt eben nicht für den Hohlzylinder.
Die Größe der Querschnitte betrug

bei den Stäben a) bis d) \(f = 50 \text{ qcm} \),

- - - c) \(f = 25 \text{ -} \)

Für gleiche Drehungsmomente (also bei im allgemeinen ungleicher Anstrengung des Materials) läßt die Gleichung 5 mit den angegebenen Einzelwerten von \(\psi \) Drehwinkel \(\vartheta_a, \vartheta_b, \vartheta_c, \vartheta_d, \vartheta_e \) erwarten, welche sich verhalten wie

\[\vartheta_a : \vartheta_b : \vartheta_c : \vartheta_d : \vartheta_e = 1 : 1,25 : 1,13 : 1,40 : 9,1. \]

Gemessen hat Bauschinger

\[\vartheta_a : \vartheta_b : \vartheta_c : \vartheta_d : \vartheta_e = 1 : 1,24 : 1,20 : 1,47 : 9,65. \]

Der Vergleich beider Verhältnisreihen zeigt, daß die für den kreisförmigen und für den elliptischen Querschnitt auf dem Wege des Versuches ermittelten Verhältniszahlen mit den berechneten in sehr guter Übereinstimmung stehen. Bei den übrigen Querschnitten ist dies nicht in dem gleichen Maße der Fall. Berücksichtigt man jedoch, daß die Entwicklung der Gleichung 5 Unveränderlichkeit des Schubkoeffizienten oder Dehnnungskoeffizienten voraussetzt, während diese Koeffizienten für Gußeisen tatsächlich veränderliche, mit wachsender Anstrengung zunehmende Werte aufweisen, welcher Umstand bedingt, daß die bei gleichem Momenten stärker angestrebten Stäbe — das Paar c) ist stärker beansprucht als d), d) bedeutender als c) und e) mehr als a) — einen größeren Drehungswinkel ergeben müssen, als die Rechnung erwarten läßt, so darf die Übereinstimmung der beiden Verhältnisreihen immerhin als eine gute bezeichnet werden.\(^1\)

Zur Prüfung der Gleichung 5 können auch noch die Drehungsversuche herangezogen werden, welche Bauschinger mit kreisförmigen und quadratischen Wellen aus verschiedenen Rohmaterialien (Siemens-Martinstahl von 6 verschiedenen Härtegraden, Bessemerstahl von 5 verschiedenen Härtegraden, Feinkorniesen und sehngem Eisen) ausgeführt hat.

\(^1\) Vergl. in bezug auf Hohlzylinder u. s. w. Fußbemerkung S. 349.
Nach Gleichung 5 ergibt sich, da der Durchmesser bezw. die Quadratseite dieser Wellen je 100 mm betrug, daß die Drehungswinkel sich verhalten müssen wie

\[\vartheta_1 : \vartheta_2 = 4 \pi^2 \frac{M_d}{\pi} \left[\frac{\pi}{4} \frac{10^4}{10^2} \right] \beta \cdot 42,68 \frac{M_d}{10^3} \frac{1}{6} \frac{10^4}{10^8} \beta = 1 : 0,698, \]

Gleichheit des Schubkoeffizienten vorausgesetzt.

Die Messung an den 13 Wellenpaaren lieferte im Mittel

\[\vartheta_1 : \vartheta_2 = 1 : 0,696 \]

allerdings mit Schwankungen der Einzelwerte zwischen 0,633 bis 0,747. Das Mittel der beobachteten Werte stimmt hiernach sehr gut mit der berechneten Drehung überein.

Die Herbeiführung des Bruches der oben unter a) bis e) erwähnten 10 unbehandelten Gußeisenkörper durch Verdrehung ergab nach Bauschinger folgende aus Gleichung 6, § 34, berechnete Werte für die Drehungsfestigkeit

a) Kreis

\[K_d = \frac{1915 + 1985}{2} = 1950 \text{ kg/qem}, \]

b) Ellipse

\[K_d = \frac{2362 + 2720}{2} = 2541 \]

c) Quadrat

\[K_d = \frac{2337 + 2569}{2} = 2453 \]

d) Rechteck \(h : b = \sim 2 : 1 \)

\[K_d = \frac{2561 + 2919}{2} = 2740 \]

e) \(h : b = \sim 4 : 1 \)

\[K_d = \frac{3390 + 3134}{2} = 3262 \]

3. Versuche mit Rundstäben und mit Schrauben aus Schweiß- und Flügeisen.

Über diese vom Verfasser in erster Linie zu dem Zweck durchgeführten Untersuchungen, den Einfluß der Gewindegänge auf die Widerstandsfähigkeit der Schrauben festzustellen, ist aus-
führlich in der Zeitschrift des Vereines deutscher Ingenieure 1895, S. 854 bis 860 und S. 889 bis 894 berichtet\(^1\)). Unter Hinweis auf diese Veröffentlichung muß sich Verfasser hier auf die Anführung einiger der Hauptergebnisse beschränken.

Rechtsgängige Schrauben aus Schweißeisen, durch ein linkssinniges Moment verdreht, erfahren Einreißen bezw. Zerreißung der Gewindegänge von außen, wie die Fig. 15 bis 18, Taf. XVI, deutlich erkennen lassen, und zwar bei einer Beanspruchung, durch welche die Drehungsfestigkeit des Kernquerschnittes noch nicht erschöpft ist, im Durchschnitt bei rund 0,8 der Drehungsfestigkeit des Kernquerschnittes.

Fig. 15 und 17 gelten für Schrauben aus gezogenem, Fig. 16 und 18 für Schrauben aus gewöhnlichem (vorher nicht überanstrengtem) Schweißeisen.

Linksgängige Schrauben aus Schweißeisen zeigen bei linksdrehendem Momente diese Rißbildung nicht, ebensowenig rechtsgängige Schrauben aus Schweißeisen bei rechtsdrehendem Momente.

Bei Schrauben aus zähem Flußeisen tritt eine Rißbildung überhaupt nicht auf. Hierin liegt — nebenbei bemerkt — ein Beitrag zur Wertschätzung des Flußeisens gegenüber dem Schweißeisen; einen weiteren liefert der Vergleich des Aussehens der Oberflächen der verdrehten Schweißeisenstäbe Fig. 19 bis 23, Taf. XVI, mit dem Aussehen der Oberflächen der verdrehten Flußeisenstäbe Fig. 24 und 25, Taf. XVI\(^2\)).

Rundstäbe erfahren durch die Verdrehung eine Zunahme der Länge.

Bei Schrauben hat die Verdrehung durch ein linksdrehendes Moment zur Folge eine Verlängerung, wenn sie rechtsgängig sind, und eine Verkürzung, wenn sie linksgängig sind. Die Ganghöhe wird im ersteren Falle kleiner, im letzteren größer.

Die Zugfestigkeit der Schrauben ist größer als diejenige der Rundstäbe aus dem gleichen Material (Schweißeisen, Flußeisen), eine Folge der Hinderung der Querzusammenziehung.

Die Drehungsfestigkeit der rechtsgängigen Schrauben aus Schweißeisen ist bei linksdrehendem Momente kleiner als diejenige der Rundstäbe aus dem gleichen Material.

\(^1\) S. auch „Abhandlungen und Berichte“ 1897, S. 244 u. f.

\(^2\) Der Wert der Verdrehungsprobe zur Feststellung der Güte des Materials ist heute viel zu wenig gewürdigt.
§ 36. Zusammenfassung.

Bei Flüßeisen, das durch ein linkssinniges Moment verdreht wird, ist die Drehungsfestigkeit der rechtsgängigen Schrauben nahezu gleich derjenigen der Rundstabe, diejenige der linksgängigen Schrauben dagegen kleiner.

Während die Zugfestigkeit der Schrauben aus gezogenem Schweißeisen bedeutend größer ist als diejenige der Schrauben aus nicht gezogenem Schweißeisen, erscheint dies bei der Drehungsfestigkeit nur in geringem Maße der Fall.

§ 36. Zusammenfassung.

Nach Maßgabe der in den Paragraphen 32 bis 34 enthaltenen Erörterungen sowie auf Grund der in § 35, Ziff. 1 und 2, niedergelegten Versuchsergebnisse lassen sich folgende Beziehungen zusammenstellen.

<table>
<thead>
<tr>
<th>No.</th>
<th>Querschnittsform</th>
<th>Drehungsmoment M_d</th>
<th>Drehungswinkel ϑ</th>
<th>$K_d : K_z$ für Gusséisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$\frac{\pi}{16} k_d d^3$</td>
<td>$\frac{32 M_d}{\pi d^4}$</td>
<td>reichlich 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$\frac{\pi}{16} k_d d^4 - d_0^4$</td>
<td>$\frac{32 M_d}{\pi d^4 - d_0^4}$</td>
<td>0,81)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$\frac{\pi}{2} k_d a b^2$</td>
<td>$\frac{1}{\pi} M_d \frac{a^2 + b^2}{a^2 b^2}$</td>
<td>1 bis 1,253)</td>
</tr>
</tbody>
</table>

Bach, Elastizität. 5. Aufl.

23
<table>
<thead>
<tr>
<th>No.</th>
<th>Querschnittsform</th>
<th>Drehungsmoment M_d</th>
<th>Drehungswinkel φ</th>
<th>$K_d : K_z$ für Gußeisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>$\frac{\pi}{2} k_d \frac{a b^3}{b} - a_0 b_0^3$</td>
<td>$\frac{1}{\pi} M_d \frac{a^2 + b^2}{a^3 b^3 (1 - m^4)} \beta$</td>
<td>0,8 bis 1³</td>
</tr>
<tr>
<td></td>
<td>$a > b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a_0 : a = b_0 : b = m$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>$\frac{1}{1,09} k_d b^3$</td>
<td>$0,967 \frac{M_d}{b^4} \beta$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>für $h : b = 1 : 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,56 \frac{b^2 + h^2}{b^3 h^3} \beta$,</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$\frac{2}{9} k_d b^2 h$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$h > b$</td>
<td></td>
<td></td>
<td>für $h : b = 4 : 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,35 \frac{b^2 + h^2}{b^3 h^3} \beta$,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>für $h : b = 8 : 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,21 \frac{b^2 + h^2}{b^3 h^3} \beta$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4 bis 1,6³</td>
</tr>
</tbody>
</table>

Nach Versuchen des Verfassers, welche jedoch noch nicht ausreichend erscheinen, werden die Zahlenwerte 3,56, 3,50, 3,35 und 3,21 einer Änderung bedürfen. (Vergl. S. 541.)
<table>
<thead>
<tr>
<th>No.</th>
<th>Querschnittsform</th>
<th>Drehungsmoment M_d</th>
<th>Drehungswinkel ϑ</th>
<th>$K_d : K_z$ für Gußeisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>$\frac{1}{20} k_d b^3$</td>
<td>$46.2 \frac{M_d}{b^4} \beta$</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>$\frac{2}{9} k_d \frac{b^3 h - b_0^3 h_0}{b}$</td>
<td>—</td>
<td>1 bis 1,25²)</td>
</tr>
<tr>
<td></td>
<td>$h > b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$h_0 : h = b_0 : b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>$\frac{2}{9} k_d s^2 (h + 2 b_0)$</td>
<td>—</td>
<td>1,4 bis 1,6²)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>$\frac{2}{9} k_d s^2 (h + b - s)$</td>
<td>—</td>
<td>1,4 bis 1,6²)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>$\frac{2}{9} k_d s^2 (h + 2 b_0)$</td>
<td>—</td>
<td>1,4 bis 1,6²)</td>
</tr>
<tr>
<td></td>
<td>$s = b - b_0 = 0.5 (h - h_0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>$\frac{2}{9} k_d s^2 (h + b - s)$</td>
<td>—</td>
<td>1,4 bis 1,6²)</td>
</tr>
</tbody>
</table>
Die Zugfestigkeiten K_z und die Drehungsfestigkeiten K_d setzen Gußeisen voraus, wie es zu zählen, festem Maschinenguß Verwendung findet. Die Drehungsfestigkeiten wurden an unbearbeiteten Stäben, Fig. 1 bis Fig. 7, § 35, und Fig. 14, § 35, (in getrockneten Formen gegossen) ermittelt.

Die Versuchsstäbe No. 6 (sofern $h > b$), No. 9 bis 12 brachen immer in der Nähe der Endplatten, entsprechend dem Umstande, daß sich an diesen Stellen der Ausbildung der Querschnittswölbung ein Hindernis bietet, welches trotz der Hohlkeule, mit welcher der prismatische Teil an die Endplatten anschließt, hier zum Bruche führt. Der letztere ist die Folge einer gleichzeitigen Inanspruchnahme durch Schub- und durch Normalspannungen, wie in § 34, Ziff. 3, erörtert worden ist. (Vergl. auch § 35, Gußeisen A, a.) Der ermittelte Wert von K_d muß deshalb kleiner sein als die tatsächliche Drehungsfestigkeit. In denjenigen Fällen der Anwendung, in welchen die Sachlage hinsichtlich des Anschlusses eines auf Drehung in Anspruch genommenen Stabes an einen solchen mit größerem Querschnitt eine ähnliche ist wie bei den Versuchskörpern, schließen die angegebenen Werte von K_d die Berücksichtigung der gleichzeitigen Inanspruchnahme durch Normalspannungen in sich. In Fällen der reinen Drehungsanstrengung führt die Verwendung dieser Werte zu einer etwas größeren Sicherheit, was im Sinne des Zweckes unserer Festigkeitsrechnungen zu liegen pflegt.

Die Gleichungen für No. 11 und No. 12 bedingen kräftige Rippen, etwa von $s : h = 1 : 5$ an. Außerdem ist für No. 11 noch zu fordern, daß b_0 nicht wesentlich mehr als $s = b - b_0$ beträgt.

1) Dieser Wert hängt ab von dem Verhältnis $d_0 : d$. In dem Maße, in welchem sich dasselbe der Null nähert, steigt er etwa bis reichlich 1. Die Zahl 0,8 gilt für $d_0 : d$ ungefähr gleich 0,7.

2) Es sind um so geringere, der kleineren Zahl näher kommende Werte zu wählen, je mehr sich je beziehungsweise die Ellipse dem Kreise, das Rechteck dem Quadrat, der \bar{L}- und der \bar{L}-Querschnitt der Quadratform ($b_0 = 0, h = s$), ebenso der \perp- und der \perp-förmige Querschnitt der letzteren ($h = b = s$) nähern.

3) Hier sind die Bemerkungen 1) und 2) zu berücksichtigen. Je kleiner verhältnismäßig a_0 und b_0 (gegenüber a und b)
beziehungsweise b_0 und h_0 (gegenüber b und h) sind, um so mehr nähert sich unter sonst gleichen Verhältnissen der Koeffizient der oberen Grenze. Das gleiche gilt, je langgestreckter der Querschnitt ist.

In der Zeitschrift des Vereines deutscher Ingenieure 1901, S. 1099 u. f. bringt Autenrieth unter Zugrundelegung gewisser Annahmen und unter Stützung auf die Versuchsergebnisse des Verfassers die Ausdrücke für M_d, bezw. K_d bei denjenigen Querschnitten, welche einen Mittelpunkt besitzen — in der Zusammenstellung No. 1 bis 10 — auf eine gemeinsame Form. Er kommt dabei im Falle des rechteckigen Querschnittes No. 6 und der ihm verwandten Querschnittsformen No. 8 bis 10 statt des Koeffizienten $\frac{9}{2} = 4,5$ auf 5,14, eine Folge der für die Schubspannungen gemachten Annahme. Hinsichtlich des Weiteren muß auf die Arbeit selbst verwiesen werden.

VI. Schub.

§ 37. Allgemeines.

Schubanstrengung unter der Voraussetzung gleichmäßiger Verteilung der Schubspannungen über den Querschnitt.

Der Fall der Inanspruchnahme auf Schub wird dann als vorhanden betrachtet, wenn sich die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte für den in Betracht gezogenen Querschnitt ersetzen lassen durch eine Kraft (Schubkraft), welche in die Ebene des letzteren fällt und die Stabachse senkrecht schneidet.

Erfüllt erscheint diese Voraussetzung nur bei einer Sachlage, wie sie in Fig. 1 dargestellt ist, entsprechend dem Arbeitsvorgange bei einer Schere zum Schneiden von Eisen. Aber auch hier nur in dem Augenblick, in welchem der Stab von den Kanten der beiden Scherblätter A und B gerade berührt wird; denn sobald das obere Blatt sich weiter vorwärts bewegt, dringen beide Blätter in den Stab ein, Fig. 2: an die Stelle der Berührung des letzteren in zwei Linien durch A und B tritt eine solche in zwei Flächen.
Damit rückt die obere Kraft S nach rechts, die untere nach links; es entsteht neben der Schubkraft S ein rechtshändiges Kräftepaar, welches Biegungsbeanspruchungen wachruft, die in dem betrachteten Beispielen allerdings zurückzutreten pflegen.

Wir erkennen, daß — streng genommen — Schubbeanspruchung allein niemals vorkommen kann, daß vielmehr die Schubkraft S immer von einem biegenderen Moment begleitet sein wird.

Die Schubkraft S ruft in dem betrachteten Querschnitt Schubspannungen wach, die im allgemeinen von Flächenelement zu Flächenelement veränderlich sein werden, und bezüglich welcher zunächst nur bekannt ist, daß sie, je multipliziert mit dem zugehörigen Flächenelement und zusammengefaßt, eine Resultante geben müssen, welche gleich und entgegengesetzt S ist. Mit der Untersstellung, daß die Schubspannungen in den verschiedenen Flächenelementen entgegengesetzt S gerichtet, also unter sich parallel sind, und die gleiche Größe r über den ganzen Querschnitt von der Größe f besitzen, findet sich

$$S = rf \quad \text{oder} \quad r = \frac{S}{f}, \quad \ldots \quad 1)$$

woraus mit

k_s als zulässiger Schubanstrengung

folgt

$$S \leq k_s f \quad \text{oder} \quad k_s \geq \frac{S}{f}, \quad \ldots \quad 2)$$

Hinsichtlich der gemachten Annahme, betreffend die Richtung und die Größe der Schubspannungen, ist folgendes zu bemerken.

Greifen wir den kreisförmigen Querschnitt, Fig. 3, heraus, so müßte hiernach beispielsweise im Querschnittselement des Umfangspunktes C bei senkrecht nach unten wirkender Schubkraft S
§ 38. Die Schubspannungen im rechteckigen Stabe.

die Schubspannung vertikal aufwärts gerichtet sein, während sie tatsächlich in die Richtung der Tangente im Punkte C des Kreises fallen muss, es sei denn, daß in diesem Umfangspunkte eine äußere Kraft tätig wäre, welche eine andere Richtung von τ bedingen würde. In den Punkten C bis D des rechteckigen Querschnittes, Fig. 4, wird die entgegengesetzt S gerichtete Schub-

![Fig. 3.](image1)

![Fig. 4.](image2)

spannung in Wirklichkeit Null sein müssen — sofern äußere Kräfte hier nicht angreifen —, während sie nach der obigen Voraussetzung in allen Flächenelementen die gleiche Größe besitzen sollte u. s. f.

Hieraus folgt, daß die Unterstellung, welche zu der Beziehung 1 und 2 führte, wenigstens im allgemeinen unzutreffend ist.

§ 38. Die Schubspannungen im rechteckigen Stabe.

Wir erkannten in der Einleitung, daß die Schubkraft immer von einem biegenden Moment begleitet sein wird. Davon ausgehend, stellen wir uns die Aufgabe, für die in Fig. 1 und 2 gezeichnete Sachlage — Balken einerseits eingespannt, am anderen freien Ende belastet — die Größe der Schubspannungen im Abstande η von der y-Achse, die hinsichtlich der Inanspruchnahme auf Biegung als Nullachse erscheint, zu ermitteln.

Zu dem Zwecke denken wir uns ein Körperelement ABCD, Fig. 1 bis 3, von der Länge x₁ — x, der Breite b und der Höhe e — η aus dem Stabe herausgeschnitten. Auf die Stirnflächen AB und CD desselben, Fig. 3, wirken Normalspannungen σ, welche mit dem Abstande η wachsen. Nach § 16 darf unter der Voraussetzung, daß der Dehnungskoeffizient unveränderlich ist, diese Zunahme proportional der ersten Potenz von η gesetzt werden, wie auch Fig. 6, § 16, daselbst erkennen läßt.
Nach Gleichung 9, § 16, ist für den Querschnitt AB, da hier $M_b = P \cdot x$, die Normalspannung im Abstande η

$$\sigma_{\eta} = \frac{P \cdot x}{\Theta} \cdot \eta$$

und die Normalspannung im Abstande e

$$\sigma_{e} = \frac{P \cdot x}{\Theta} \cdot e,$$

sofern $\Theta = \frac{1}{12} \cdot b \cdot h^3$ das Trägheitsmoment des Querschnittes in Bezug auf die y-Achse.

Die auf die Querschnittsfläche AB von der Größe $b \cdot (e - \eta)$ wirkenden Spannungen liefern zusammengefaßt eine Normalkraft

$$N = \frac{\sigma_{\eta} + \sigma_{e}}{2} \cdot b \cdot (e - \eta) = \frac{P \cdot x \cdot e + \eta}{\Theta} \cdot b \cdot (e - \eta) = \frac{P \cdot x \cdot e^2 - \eta^2}{\Theta} \cdot b.$$

Für den Querschnitt CD findet sich wegen $M_b = P \cdot x_1$ auf ganz gleichem Wege diese Normalkraft zu

$$N_1 = \frac{P \cdot x_1 \cdot e^2 - \eta^2}{2} \cdot b.$$

Da infolge $x_1 > x$ auch $N_1 > N$ ist, so muß die Kraft

$$N_1 - N = \frac{P}{\Theta} \cdot (x_1 - x) \cdot e^2 - \eta^2 \cdot b.$$
§ 38. Die Schubspannungen im rechteckigen Stabe.

361
durch Spannungen in der Fläche CA, deren Größe gleich (x_1-x) b, übertragen werden, sofern an der Mantelfläche BD äußere Kräfte nicht angreifen, was vorausgesetzt werden soll. Diese in der Richtung CA wirkenden und über die Stabbreite b als gleich groß angenommenen Schubspannungen seien mit τ bezeichnet. Dann gilt

$$N_1 - N = \tau (x_1 - x) b = \frac{P}{\Theta} (x_1 - x) \frac{e^2 - \eta^2}{2} b,$$

woraus

$$\tau = \frac{P e^2 - \eta^2}{2} = 6 \frac{P}{b h^3 (e^2 - \eta^2)} = \frac{3}{2} \frac{S}{b h} \left[1 - \left(\frac{\eta}{h} \right)^2 \right] \left(\frac{\eta}{h} \right)^2 1)$$

unter Beachtung, daß hier $P = S$.

Die Schubspannung erlangt ihren größten Wert für $\eta = 0$, d. i. für die Stabmitte (Nullachse). Derselbe beträgt

$$\tau_{\text{max}} = \frac{3}{2} \frac{S}{b h} = \frac{3}{2} \frac{S}{f}, \quad \ldots \ldots \quad 2)$$

sofern $b h = f$ gesetzt wird.

In der Nullachse ist hiernach die Schubspannung um 50% größer als bei gleichmäßiger Verteilung der Spannungen über den Querschnitt.

Für $\eta = \frac{h}{2}$, d. i. für die am weitesten von der Nullachse abstehenden Punkte, wird $\tau = 0$.

Werden in Fig. 4 die zu den einzelnen Abständen η gehörigen Werte von τ als wagrechte Ordinaten aufgetragen, so wird eine Linie EFE erhalten, welche das Änderungsgesetz von τ klar veranschaulicht. Diese Linie ist für das Rechteck eine Parabel, deren Scheitel F um $\overline{OF} = \tau_{\text{max}} = \frac{3}{2} \frac{S}{b h}$ von O abliegt, wie sich ohne weiteres ergibt, wenn die Senkrechte FG als Ordinatenachse gewählt wird und der Gleichung 1 die Form

$$\tau_{\text{max}} - \tau = \tau_{\text{max}} \left(\frac{\eta}{h} \right)^2 \left(\frac{\eta}{h} \right)^2$$
oder
\[\eta^2 = \left(\frac{h}{2} \right)^2 \frac{v_{\text{max}}}{v_{\text{max}}} \]
gegeben wird.

Die vorstehende Betrachtung ermittelte die Schubspannungen in Ebenen, welche parallel zur Stabachse laufen und senkrecht zur Richtung der Schubkraft \(S \) stehen, so z. B. in einem beliebigen Punkt \(P \) der Linie \(P'P' \), Fig. 4, immer diejenige Schubspannung \(\tau \), welche senkrecht zu \(P'P' \) wirkt und parallel zur Stabachse (dem-

![Fig. 4.](image)
nach senkrecht zur Bildebene, Fig. 4) gerichtet ist. Nach § 30 (vergl. auch Fig. 5, § 32) treten die Schubspannungen immer paarweise auf, derart, daß die oben erwähnte Spannung \(\tau \) auch im Punkte \(P \) der Querschnittsebene, also in der Bildebene liegend, vorhanden ist. Infolgedessen ergibt die Gleichung 1 gleichzeitig die Schubspannungen in der Querschnittsebene, und zwar diejenigen, welche im Abstande \(\eta \) in dem Flächenstreifen \(b \, d \eta \) wirksam sind. Damit ist in Gleichung 1 ebenfalls das Gesetz gewonnen, nach dem sich die Schubspannungen in der Ebene des Querschnittes verteilen.

Die Forderung, daß diese Spannungen in den Umfangspunkten des Querschnittes immer mit der Tangente an der Begrenzungslinie zusammenfallen müssen, sofern äußere, eine andere Richtung bedingende Kräfte hier nicht angreifen, wird von diesem Verteilungsgesetz erfüllt. In den Punkten der Begrenzungslinie \(AC \), Fig. 4, § 37, fällt die Richtung von \(\tau \) mit \(AC \) zusammen, und in \(CBD \) ist \(\tau = 0 \).
Mit der Veränderlichkeit der Schubspannung ist naturgemäß Krümmung der ursprünglich ebenen Querschnitte verknüpft, bezüglich welcher auf § 52 verwiesen sei.

§ 39. Die Schubspannungen im prismatischen Stabe von beliebigem, jedoch hinsichtlich der Kraftebene symmetrischem Querschnitt.

Es bezeichne unter Bezugnahme auf Fig. 1

\[S \text{ die Schubkraft, welche in die Richtung derjenigen Hauptachse fällt, von der vorausgesetzt werde, daß sie Symmetrieebene des Querschnittes ist,} \]
\[\Theta \text{ das Trägheitsmoment des Querschnittes in bezug auf diejenige Achse, welche zu } S \text{ senkrecht steht, d. i. die } y\text{-Achse,} \]
\[\int \text{ die Größe des Querschnittes,} \]
\[2y \text{ die Breite des Querschnittes im Abstande } \eta, \]
\[M_{\eta} = \int_{\eta} 2y \eta \, d\eta \text{ das statische Moment der zwischen den Abständen } \eta \text{ und } e \text{ gelegenen (in der Figur durch Strichlage hervorgehobenen) Fläche des Querschnittes hinsichtlich der } y\text{-Achse,} \]
den Winkel, welchen die Tangente im Umfangspunkte \(P' \) mit der Symmetrieachse einschließt,

\(\tau \) die Schubspannung, welche in dem um \(\eta \) abstehenden Umfangspunkte \(P' \) durch \(S \) hervorgerufen wird,

\(k_s \) die zulässige Anstrengung des Materials bei Inanspruchnahme auf Schub.

Nach dem Vorgänge in § 38 schneiden wir aus dem Stabe (vergl. auch Fig. 1 und 2, § 38) ein Körperelement, Fig. 2,

![Fig. 2.](image)

hieraus. Auf das im Abstande \(\eta \) gelegene Flächenelement \(2y \, d\eta \) der Stirnfläche \(AB \) wirkt die Normalspannung

\[
\sigma_\eta = \frac{P \, x}{\Theta} \, \eta.
\]

Hieraus ergibt sich für die Schnitfläche \(AB \) von der Größe \(\int \limits_{\eta} \! 2 \, y \, d\eta \) die Normalkraft

\[
N = \int \limits_{\eta} \! 2 \, y \, \sigma_\eta \, d\eta = \frac{P \, x}{\Theta} \int \limits_{\eta} \! 2 \, y \, \eta \, d\eta = P \, x \, \frac{M_\eta}{\Theta}.
\]

Für die Stirnfläche \(CD \) findet sich auf ganz gleichem Wege die Normalkraft

\[
N_1 = P \, x_1 \, \frac{M_\eta}{\Theta}.
\]

Demnach der Überschub \(N_1 \) über \(N \)

\[
N_1 - N = \frac{P}{\Theta} \, (x_1 - x) \, M_\eta.
\]

Diese Kraft muß durch Schubspannungen in der Fläche \(CA \), deren Größe gleich \((x_1 - x) \, 2y \) ist, übertragen werden. Dieselben,
in Richtung der Stabachse, also senkrecht zur y-Achse wirkend, seien als gleich groß über die Breite 2y vorausgesetzt und mit \(\tau_y \) bezeichnet. Dann folgt

\[
N_1 - N = \tau_y \cdot 2 (x_1 - x) y = \frac{P}{\Theta} (x_1 - x) M_y ,
\]

\[
\tau_y = \frac{P}{2y \cdot \Theta} \cdot M_y .
\]

Bei der vorstehenden Entwicklung wurde angenommen, daß die Änderung des biegenden Momentes beim Vorwärtschreiten von dem einen zu dem anderen der beiden um \(x_1 - x \) voneinander abstehenden Querschnitte nach Maßgabe der Fig. 1, § 38, nur von der Kraft \(P \) beeinflußt werde. Für den Fall, daß diese Voraussetzung nicht zutrifft, daß vielmehr der Stab, Fig. 3, außer

![Diagramme](image-url)

Fig. 3.

durch die am freien Ende angreifende Kraft \(P \) auch noch sonst belastet ist, etwa durch eine Kraft \(P' \), durch die gleichmäßig über ihn verteilte Last \(q \) sowie durch eine zwischen den beiden Querschnitten angreifende Last \(P'' \), so findet sich für

die Stirnfläche \(AB \) die Stirnfläche \(CD \)

das biegende Moment:

\[
Px + P'x' + q \frac{x'^2}{2} , \quad Px_1 + P'x'_1 + q \frac{x_1'^2}{2} + P''x_1'' ,
\]

die Normalspannung \(\sigma_y \):

\[
\frac{Px + P'x' + q \frac{x'^2}{2}}{\Theta} , \quad \frac{Px_1 + P'x'_1 + q \frac{x_1'^2}{2} + P''x_1''}{\Theta} .
\]
die Normalkraft \(\int_2 y \sigma_y \, d \eta \):

\[
N = \frac{P x + P' x' + q \frac{x^2}{2}}{\Theta} M \gamma, \quad N_y = \frac{P x_1 + P' x_1' + q \frac{x_1^2}{2} + P'' x_1''}{\Theta} M \gamma.
\]

Hieraus folgt

\[
N_1 - N = \frac{P (x_1 - x) + P' (x_1' - x') + q \frac{1}{2} (x_1^2 - x^2) + P'' x_1''}{\Theta} M \gamma.
\]

Wegen

\[
\xi = x_1 - x = x_1' - x',
\]

\[
\frac{x_1^2 - x^2}{2} = \frac{x_1 + x}{2} (x_1 - x) = \xi \frac{x_1 + x}{2}
\]

wird

\[
N_1 - N = \frac{P \xi + P' \xi + q \frac{x_1 + x}{2} \xi + P'' x_1''}{\Theta} M \gamma.
\]

Diese Kraft ist durch die Schubspannungen in der Fläche CA vom Inhalte \(2 y \xi \) zu übertragen. Soll deren Größe innerhalb dieser Fläche als konstant angenommen werden dürfen, so muß \(\xi \) unendlich klein gewählt werden. Dann ergibt sich zunächst

\[
N_1 - N = \tau_y 2 y \xi
\]

und die Schubspannung:

1. für den Querschnitt CD im Abstande \(x_1 = x + \xi \) vom freien Ende

\[
\tau_y = \frac{P + P' + q \frac{x_1 + x}{2} + P'' \frac{x_1''}{\xi}}{2 y \Theta} M \gamma,
\]

woraus unter Beachtung, daß, wenn \(\xi \) unendlich klein ist, \(\frac{x_1''}{\xi} = 1 \) sein muß,

\[
\tau_y = \frac{P + P' + q x_1 + P''}{2 y \Theta} M \gamma;
\]
§ 39. Die Schubspannungen im prismatischen Stabe u. s. w.

2. für den Querschnitt AB im Abstande x vom freien Ende

$$\tau_y = \frac{P + P' + q_x}{2y \Theta} M_\pi.$$

Im ersteren Falle ist

$$P + P' + q x_1 + P'' = S$$

und im zweiten

$$P + P' + q x = S.$$

Demnach allgemein

$$\tau_y = \frac{S}{2y \Theta} M_\pi,$$

1) ganz, wie oben schon gefunden).

Dieser Wert, welcher zunächst nur die wagrechte Schubspannung bestimmt, nach § 30 aber auch gleich der senkrechten Schubspannung in demselben Punkte des in wagrechter Lage gedachten Stabes ist, bedarf noch einer Ergänzung, damit die Forderung befriedigt wird, daß die Schubspannungen in den Querschnittselementen der Umfangspunkte tangential zur Begrenzungs- linie gerichtet sind.

Diese Forderung bedingt beispielsweise für das im Punkte P', Fig. 1, gelegene Flächenelement, daß die Schubspannung in die Richtung der Tangente $TP'Q$ oder $QP'T$ fällt. Andererseits fanden wir oben, daß die senkrecht zur y-Achse, also parallel zur Richtung der Schubkraft wirkenden Schubspannungen die nach Gleichung 1 bestimmte Größe τ_y besitzen müssen. Beiden Bedingungen wird durch die Annahme Befriedigung, daß die Schubspannung im Punkte P' beträgt

$${\frac{d M_b}{d x}} = S.$$

1) Die vorstehende Entwicklung läßt sich kürzen und allgemeiner gestalten, wenn von dem Satze Gebrauch gemacht wird, daß der erste Differentialquotient des biegenden Momentes M_b in bezug auf x gleich der Schubkraft ist, d. h.

Aus leicht ersichtlichem Grunde wurde dem eingeschlagenen Wege der Vorzug gegeben.
\[\tau' = \frac{x_y}{\cos \varphi'} = \frac{S}{2y \cos \varphi'} \frac{M_\eta}{\Theta} \quad \ldots \ldots \quad 2) \]

und für den beliebig zwischen \(P'P' \) gelegenen Querschnittspunkt \(P \)

\[\tau = \frac{x_y}{\cos \varphi} = \frac{S}{2y \cos \varphi} \frac{M_\eta}{\Theta} \quad \ldots \ldots \quad 3) \]

Gleichung 3, aus welcher sich die Beziehung 2 mit \(\varphi = \varphi' \) als Sonderwert ergibt, spricht aus, daß die sämtlichen Schubspannungen in den um \(\eta \) von \(YY \) abstehenden Querschnittselementen sich in demselben Punkte \(Q \) schneiden und die gleiche Komponente \(\tau_y \) in der Richtung von \(S \) besitzen.

Wegen \(\tau' \leq k_s \) ergibt sich

\[k_s \geq \frac{S}{2y \cos \varphi'} \frac{M_\eta}{\Theta} \quad \ldots \ldots \quad 4) \]

oder

\[S \leq k_s \frac{\Theta}{M_\eta} 2y \cos \varphi'. \ldots \ldots \quad 5) \]

Aus der Gleichung 2 folgt nachstehendes.

a) Rechteckiger Querschnitt, Fig. 2, § 38, da hier

\[2y = b \quad \varphi' = 0, \]

\[M_\eta = b \left(\frac{h}{2} - \eta \right) \frac{h}{2} + \frac{\eta}{2} = b \frac{h^2}{4} - \eta^2, \]

\[\tau' = \frac{b}{2} \left(\frac{h^2}{4} - \eta^2 \right) = \frac{3}{2} \frac{S}{b} h \left[1 - \left(\frac{\eta}{h} \right)^2 \right] \]

und für \(\eta = 0 \)

\[\tau_{max} = \frac{3}{2} \frac{S}{b h} = \frac{3}{2} \frac{S}{f}, \]

wie schon im § 38 als Gleichung 2 ermittelt.
b) Kreisförmiger Querschnitt, Fig. 4.

\[y = r \sin \psi = r \cos \varphi' \quad \Theta = \frac{\pi}{4} r^4 \quad f = \pi r^2. \]

Das statische Moment \(M_y \) des Kreisabschnittes kann unmittelbar bestimmt werden durch Integration oder auch durch die Erwágung, daß der Abstand des Schwerpunktes desselben von der \(y \)-Achse

\[\frac{(2y)^3}{12f_a}, \]

sofern \(f_a \) den Inhalt des Abschnittes bezeichnet.

\[M_y = \frac{(2y)^3}{12f_a} f_a = \frac{2y^3}{3} = \frac{2r^3 \cos^3 \varphi'}{3} \]

\[z' = \frac{S}{2r \cos^2 \varphi'} \cdot \frac{2r^3 \cos^2 \varphi'}{3} \cdot \frac{\pi}{4} r^4 = \frac{4}{3} \cdot \frac{\pi}{4} r^4 \cdot \cos \varphi' = \frac{4}{3} \frac{S}{f} \cos \varphi'. \]

Bach, Elastizität. 5. Aufl.

24
oder auch, da

\[
\cos \varphi' = \sqrt{1 - \cos^2 \psi} = \sqrt{1 - \left(\frac{\eta}{r}\right)^2}
\]

\[
v' = \frac{4}{3} \frac{S}{f} \sqrt{1 - \left(\frac{\eta}{r}\right)^2}.
\]

Für \(\varphi' = 0\), d. i. für die Nullachse, erlangt \(v'\) seinen größten Wert

\[
v_{\text{max}} = \frac{4}{3} \frac{S}{f} \ldots \ldots \ldots \ldots 7)
\]

Bei kreisförmigem Querschnitt ergibt sich demnach die Schubspannung in der Nullachse um 33,33 % größer, als wenn gleichmäßige Verteilung der Schubkraft über den Querschnitt unterstellt wird.

Werden die zu den einzelnen Abständen \(\eta\) gehörigen Werte von \(v'\) als wagrechte Ordinaten aufgetragen, so wird, da

\[
\left(\frac{v'}{\frac{4}{3} \frac{S}{f}}\right)^2 + \left(\frac{\eta}{r}\right)^2 = 1,
\]

das Änderungsgesetz von \(v'\) durch eine Ellipse dargestellt.

c) Kreisringförmiger Querschnitt, Fig. 5.

![Fig. 5.](image)

Unter der Voraussetzung, daß die Wandstärke verhältnismäßig klein ist, und es sich nur um die Ermittlung der größten, in der Nullachse auftretenden Schubspannung handelt, findet sich mit

\[
2y = d - d_0 = 2s \quad \varphi' = 0 \quad d + d_0 = 2d_m
\]
\[\Theta = \frac{\pi}{64} (d^4 - d_0^4) = \frac{\pi}{64} (d^2 + d_0^2) (d + d_0) (d - d_0) = \sim \frac{\pi}{8} d_m^3 s. \]

\[M_s = \frac{1}{2} \pi d_m s \cdot \frac{1}{\pi} d_m = \frac{1}{2} d_m^2 s, \]

\[\tau_{\text{max}} = \frac{S}{2 s} \frac{1}{\pi} d_m s = 2 \frac{S}{\pi d_m s} = 2 \frac{S}{f}, \quad 8) \]

sofern der Querschnitt des Ringes

\[\frac{\pi}{4} (d^2 - d_0^2) = \pi d_m s = f. \]

Hiernach erscheint die Schubspannung in der Nullachse um 100% größer als bei gleichmäßiger Verteilung der Schubkraft über den Querschnitt.

d) \(\square \)-Querschnitt, Fig. 6.

![Fig. 6.](image)

In der Mitte des Steges ist

\[2y = 1,5 \text{ cm} \quad \varphi' = 0, \]

\[M_\tau = 1,5 \cdot 8 \cdot 4 + 10 \cdot 2 \cdot 9 = 228 \text{ cm}^3, \]

\[\Theta = \frac{1}{12} (10 \cdot 20^3 - 8,5 \cdot 16^3) = 3765 \text{ cm}^4, \]

\[\tau_{\text{max}} = \frac{S}{1,5} \frac{228}{3765} = 0,0404 \ S. \]

24°
Wegen \[f' = 10 \cdot 20 - 8,5 \cdot 16 = 64 \text{ qem} \]

wird \[\tau_{\text{max}} = 2,59 \cdot \frac{S}{f}. \]

Streng genommen ist für Querschnitte dieser Art, bei denen sich die Breite 2\(y \) und der Winkel \(\varphi' \) beim Übergang des Steges in die Flanschen plötzlich ändern, die Gleichung 2 nicht mehr richtig; jedenfalls kann sie für die Beurteilung der Schubspannungen an dieser Übergangsstelle und in der Nähe derselben ganz unzutreffende Werte liefern. Da, wo ein so plötzlicher Wechsel in der Breite des Querschnittes eintritt, muß die oben gemachte Voraussetzung des Gleichbleibens von \(\tau_y \) über die ganze Breite 2\(y \) unzulässig werden.

Die Gleichung 3 und ihre Sonderwerte beruhen auf der Voraussetzung eines unveränderlichen Schubkoeffizienten. Bei Materialien, für welche diese Voraussetzung nicht zutrifft, wie z. B. bei Gußeisen, werden dieselben unter Umständen zu mehr oder minder bedeutenden Unrichtigkeiten führen können.

§ 40. Schubversuche.

Dieselben pflegen durchgeführt zu werden nach Maßgabe der Fig. 1, § 37, S. 358, oder insbesondere für Rundstäbe mit der in

![Fig. 1](image-url)

Fig. 1 dargestellten Einrichtung, wobei der Versuchsstab in zwei Querschnitten, also doppelschnittig, durchgesichert wird.
§ 40. Schubversuche.

Bedeutet S die Kraft, welche erforderlich ist, um den Stab vom Querschnitte f abzuscheren, so wird der Quotient

$$\frac{S}{f}$$ (Verfahren Fig. 1, § 37, S. 358),

bezw.

$$\frac{S}{2f}$$ (Verfahren Fig. 1)

als Schubfestigkeit oder Scherfestigkeit des Materials bezeichnet. Der letztere Ausdruck erscheint als der zutreffendere. Es wird, namentlich durch das Verfahren, wie es Fig. 1, § 37, S. 358, andeutet, weniger die Widerstandsfähigkeit ermittelt, welche bei einem auf Schub beanspruchten Konstruktionsteil nach Maßgabe der Betrachtungen in den §§ 38 und 39 in Frage steht, als vielmehr diejenige Kraft, welche erforderlich ist, um den Stab durchzuschneiden. Aus diesem Grunde hat es auch Bedenken, von der so ermittelten Scherfestigkeit auf die zulässige Schubanstrengung zu schließen. In dieser Beziehung sei insbesondere noch auf folgendes hingewiesen.

Nach Gleichung 6, § 31, besteht für durchaus gleichartiges Material zwischen der Schub- und Zuganstrengung die Beziehung

$$k_z = 0,75 k_z \text{ bis } 0,8 k_z.$$

Weiter ist beispielsweise nach Gleichung 2, § 38, für einen Stab von rechteckigem Querschnitt

$$\tau_{\text{max}} = \frac{3}{2} \frac{S}{bh} = \frac{3}{2} \frac{S}{f},$$

woraus wegen $\tau_{\text{max}} \leq k_z$

$$k_z \geq \frac{3}{2} \frac{S}{f},$$

$$\frac{3}{2} \frac{S}{f} \leq 0,75 k_z \text{ bis } 0,8 k_z,$$

$$\frac{S}{f} \leq 0,5 k_z \text{ bis } 0,53 k_z,$$
Abscherversuche mit Schmiedeeisen und Stahl, in einer der beiden beschriebenen Weisen angestellt, liefern die Scherfestigkeit $= 0,67$ bis $0,8$ der Zugfestigkeit, also wesentlich höher.

Für kreisförmigen Querschnitt ist nach Gleichung 7, § 39,

$$
\tau_{\text{max}} = \frac{4}{3} \frac{S}{f}
$$

woraus

$$
\frac{S}{f} < 0,56 \, k_z \text{ bis } 0,6 \, k_z.
$$

Abscherversuche, nach Fig. 1, S. 372, durchgeführt, pflegen die Scherfestigkeit des Schmiedeeisens und des Stahles zu $0,75$ bis $0,8$ der Zugfestigkeit zu geben, also ebenfalls wesentlich größer.

Die unten folgenden Versuche mit gusseisernen Rundstäben liefern sogar

Scherfestigkeit: Zugfestigkeit $= 1620 : 1595 = 1,02 : 1$,

bezw.

$$
1967 : 1679 = 1,17 : 1.
$$

Dieses abweichende Verhalten des Gusseisens gegenüber Schmiedeeisen und Stahl erklärt sich in erster Linie aus der Veränderlichkeit des Schubkoeffizienten β (Dehnungskoeffizienten α). Für die Beurteilung der beiden Prüfungsverfahren kommt sodann weiter in Betracht der oben festgestellte Umstand, daß die wirkende Schubkraft von einem biegenden Moment begleitet wird. Bei dem durch Fig. 1, § 37, S. 358, angedeuteten Vorgang läßt sich dasselbe allerdings auf einen unerheblichen Betrag herabdrücken, dagegen tritt es stark auf bei dem Verfahren nach Fig. 1, S. 372: wir haben tatsächlich einen im mittleren Teile (innerhalb der Strecke b) belasteten und nach außen anliegenden Stab. Eine scharfe Beobachtung zeigt auch deutlich, daß der Versuchskörper durch die Belastung zunächst eine Durchbiegung erfährt und dann erst abgesichert wird. Ist das Material spröde wie z. B. Gusseisen, so erfolgt zunächst Bruch des Stabes durch das biegende Moment und zwar innerhalb der Strecke b; erst später (bei höherer Belastung) tritt das Abschonen ein. In dieser Hinsicht geben die nachstehenden Versuche des Verfassers lehrreichen Aufschluß.
Rundstäbe von 20,0 mm Durchmesser \(f = 3,14 \text{ qcm} \), aus Gußeisen gedreht, geprüft nach dem Verfahren Fig. 1, S. 372.

No. 1. Bei der Belastung \(S = 3000 \text{ kg} \) bricht der Stab infolge Biegung, die Wage der Maschine sinkt. Der Versuch wird fortgesetzt, hierbei steigt die Belastung allmählich bis \(S = 10200 \text{ kg} \), welche Kraft das Abscheren herbeiführt\(^1\)).

Fig. 2 (Taf. XV) zeigt den an den Enden auf die Länge \(b \) abgeschnittenen und im mittleren Teile durch Biegung gebrochenen Stabteil. Die von dem biegenden Moment gezogenen Fasern sind gerissen, während die gedrückten zum Teil noch unangegriffen erscheinen.

Die Scherfestigkeit beträgt \(\frac{10200}{2 \cdot 3,14} = 1624 \text{ kg/qcm.} \)

No. 2. Bei der Belastung \(S = 2825 \text{ kg} \) bricht der Stab infolge der Biegung (d. h. die gezogenen Fasern zerreißen), bei \(S = 9950 \text{ kg} \) erfolgt das Abscheren.

Scherfestigkeit \(= \frac{9950}{2 \cdot 3,14} = 1584 \text{ kg/qcm.} \)

No. 3. Verhalten ganz wie bei No. 1 und 2, \(S = 3350 \text{ kg} \), beziehungsweise \(10370 \text{ kg}. \)

Scherfestigkeit \(= \frac{10370}{2 \cdot 3,14} = 1651 \text{ kg/qcm.} \)

Durchschnitt der Scherfestigkeiten \(= \frac{1624 + 1584 + 1651}{3} = 1620 \text{ kg/qcm.} \)

Eine genaue Bestimmung der Biegungsfestigkeit ist nicht möglich, da die Feststellung des biegenden Moments \(M_b \) die Kenntnis der Verteilung der Belastung über die Strecken \(a, b \) und \(a \) voraussetzt, und überdies neben der Biegungsanstrengung auch Schubanstrengung stattfindet. Außerdem kommt noch der Einfluß der

\(^1\) Diese Erscheinung der Aufeinanderfolge des Biegunssbruches und des Abscherens, sowie der große Unterschied zwischen den betreffenden Belastungen sind um so bemerkenswerter, als die Biegungsfestigkeit gußeiserner Rundstäbe das Doppelte der Zugfestigkeit übersteigt. (Vergl. § 22, Ziff. 2.)
Reibungskräfte in Betracht, welche durch die Biegung des Stabes in den Auflagerflächen wachgerufen werden. (Vergl. § 46, oder auch Zeitschrift des Vereines deutscher Ingenieure 1888; Fußbemerkung auf S. 224 u. f.) Wird in Übereinstimmung mit Fig. 3
gleichmäßige Verteilung unterstellt und der Einfluß des Reibungswiderstandes vernachlässigt, so wäre

\[M_b = \frac{S}{2} \left(\frac{a}{2} + \frac{b}{2} - \frac{b}{4} \right) = \frac{S}{4} \left(a + \frac{b}{2} \right) \]

und, da im vorliegenden Falle

\[a = 2,2 \text{ cm} \quad b = 3,0 \text{ cm} \quad \frac{\Theta}{e} = \frac{\pi}{32} \cdot 2^3, \]
die Biegungsfestigkeit \(K_b \)

für No. 1 \[\frac{3000}{4} \left(\frac{2,2 + 1,5}{2^3} \right) = \frac{3000 \cdot 3,7}{3,14} = \sim 3530 \text{ kg/qcm}, \]

für No. 2 \[\frac{2825 \cdot 3,7}{3,14} = \sim 3330 \text{ kg/qcm}, \]

für No. 3 \[\frac{3350 \cdot 3,7}{3,14} = \sim 3950 \text{ kg/qcm}, \]

im Durchschnitt \(K_b = 3603 \text{ kg/qcm}. \)

Die Zugprobe mit denselben Rundstäben hatte ergeben die Zugfestigkeit
für No. 1 1560 kg/qcm,
für No. 2 1586 kg/qcm,
für No. 3 1640 kg/qcm,

im Durchschnitt $K_z = 1595$ kg/qcm.

Nach § 22, Ziff. 2, Gußeisen A, S. 249, No. 6, wäre hieraus auf eine Biegungsfestigkeit von

$$K_b = 2,12 K_z = 1595 \cdot 2,12 = 3381 \text{ kg/qcm}$$

zu schließen, welche Größe nicht sehr bedeutend abweicht von derjenigen, die auf Grund der Annahme gleichmäßiger Verteilung der Kräfte über die Strecken a, b und a erhalten wurde. Würde der das biegende Moment vermindernene Einfluß der Reibung berücksichtigt worden sein, so wäre eine noch weiter gehende Überestimmung eingetreten.

Rundstäbe von rund 24 mm Durchmesser, aus Gußeisen gedreht, geprüft nach Fig. 1, S. 372.

<table>
<thead>
<tr>
<th>No.</th>
<th>Durchmesser d cm</th>
<th>Querschnitt $\frac{\pi d^2}{4}$ qcm</th>
<th>Belastung S beim Bruch durch Biegung S_1 kg</th>
<th>Ab- scheren S_2 kg</th>
<th>Scherfestigkeit $K_z = S_2 : 2 \frac{\pi}{4} d^2$ kg/qcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,38</td>
<td>4,45</td>
<td>7600</td>
<td>17650</td>
<td>1983</td>
</tr>
<tr>
<td>2</td>
<td>2,37</td>
<td>4,41</td>
<td>8250</td>
<td>17060</td>
<td>1934</td>
</tr>
<tr>
<td>3</td>
<td>2,38</td>
<td>4,45</td>
<td>8450</td>
<td>17750</td>
<td>1994</td>
</tr>
</tbody>
</table>

Durchschnitt 1970

Die Zugfestigkeit der drei Stäbe war vorher zu

$$K_z = \frac{1766 + 1621 + 1649}{3} = 1679 \text{ kg/qcm}$$

ermittelt worden.
Wird Schmiedeisen der Prüfung nach Fig. 1, S. 372, unterworfen, so erfolgt allerdings vor dem Abscheren kein Bruch, weil das Material dem biegenden Momente gegenüber eine genügend weitgehende Formänderung zuläßt. Da aber bei Konstruktionssteilen derartige Formänderungen in der Regel nicht statthaft erscheinen, so erheilt, daß selbst in Fällen der Beanspruchung, wie sie durch Fig. 1, S. 372, dargestellt wird, die Berechnung auf Biegung — wenigstens der Regel nach — maßgebend ist 1).

1) In dieser Hinsicht bringt die Literatur noch häufig irrtümliche Angaben, obgleich sie hiermit schon seit langer Zeit und naturgemäß im Widerspruch mit dem steht, was zweckmäßigerweise tatsächlich ausgeführt wird. So pflegt beispielsweise in Beziehung auf die Gelenkbolzen bei Dachkonstruktionen u. dergl., für die Keile der Keilverbindungen, die Bolzen gewisser Schraubenverbindungen, die Zähne der Sperräder u. s. f. angegeben zu werden, daß dieselben auf Schub oder gegen Abscheren zu berechnen seien. Hinsichtlich der Gelenkbolzen und ähnlicher Teile dürfte das oben Erörterte zur Klarstellung ausreichen (vergl. auch § 52, Ziff. 1a), betreffs der Keile, Gewindegänge u. s. f. sei auf des Verfassers Maschinenelemente 1880, S. 41 u. f. (Taf. 1, Fig. 28 und 30) bezw. S. 50, S. 238, 1891/92, S. 80 u. f., S. 92 u. s. w. verwiesen. In bezug auf Sperrzähne möge das Folgende bemerkt werden.

Die Kraft \(P \), Fig. 4, im ungünstigsten Falle außen im Punkt \(B \) angreifend (vergl. Schlußabsatz dieser Fußbemerkung), ergibt in bezug auf den zunächst beliebig unter dem Winkel \(\varphi \) angenommenen Bruchquerschnitt \(AX \) mit dem Mittelpunkt \(M \) ein Kräftepaa vom Moment \(Px \), welches auf Biegung wirkt, ferner eine Schubkraft \(S = P \sin \varphi \) und eine Druckkraft \(N = P \cos \varphi \), welch letztere in der Regel ohne weiteres vernachlässigt werden kann.

Bezeichnet \(b \) die Breite der Sperrzähne, so findet sich die größte Biegungs-anstrengung \(\sigma \) des Materials nach Gleichung 10, § 16, zu

\[
\sigma = \frac{Px}{\frac{1}{6} \cdot \frac{b}{h^2}} = 6 \cdot \frac{Px}{b \cdot h^2}.
\]
Durch Verminderung von \(\beta \) und \(a \) kann allerdings das biegende Moment verringert werden; gleichzeitig wächst aber dann die Pressung \(S : b d \) gegen die Mantelfläche des Rundstabes. Hierdurch aber wird der Verringерung von \(a \) und damit auch derjenigen des biegenden Momentes eine Grenze gezogen.

Da die Widerstandsfähigkeit des Stabes vom Durchmesser \(d \) gegen Biegung der dritten Potenz von \(d \), gegen Schub dagegen nur der zweiten Potenz von \(d \) proportional ist, so muß das Prüfungsverfahren nach Fig. 1, S. 372, für das gleiche Material unter sonst gleichen Verhältnissen Werte für die Schubfestigkeit \(S : f \) liefern, welche von \(d \) abhängig sind. Durch die großen Pressungen gegen die Mantelflächen der abzuschernden Zylinder, welche Kräfte ihrerseits gegenüber dem Bestreben des Stabes, auf der Unterlage zu gleiten, Reibungskräfte wahrzuführen (vergl. § 46), findet allerdings eine weitere Trübung dieses Verhältnisses statt.

Es ist nun derjenige Querschnitt festzustellen, für welchen \(\sigma \) den größten Wert erlangt, was bei im allgemeinen beliebiger Gestalt der Begrenzungslinie des Zahnes am einfachsten durch Ausprobieren geschieht.

Zur Biegungsbeanspruchung tritt nun allerdings die Schubanstrengung. Wie in § 52 unter Ziff. 1b erörtert wird, ergibt sich jedoch für den rechteckigen Querschnitt, daß die Biegungsanstrengung allein maßgebend ist, solange

\[
\frac{x}{\sin \varphi} \geq 0,325 h,
\]

d. h. solange

\[
x \geq 0,325 h \sin \varphi.
\]

Diese Bedingung wird fast ausnahmslos erfüllt sein, infolgedessen Sperrzähne ebenso ausnahmslos auf Biegung zu berechnen sind.

Indem der Bruchquerschnitt durch \(A \) geführt wird, wie oben geschehen, ist vorausgesetzt, es habe die Begrenzungslinie des Zahnes eine solche Form, daß die Widerstandsfähigkeit der oberhalb \(A \) möglichen Bruchquerschnitte einen größeren oder mindestens den gleichen Wert besitzt. Wird \(P \) als ganz äußerlich angreifend angenommen, wie in Fig. 4 gezeichnet, so trifft diese Voransetzung bei den üblichen Zahnformen allerdings nicht zu, wohl aber dann, wenn die Angriffslinie von \(P \) — in Übereinstimmung mit der Wirklichkeit — um eine kleine Strecke von \(B \) nach innen verlegt wird. Beim Entwerfen pflegt man in der Weise vorzugehen, daß die Begrenzungslinie des Zahnes gewählt und sodann untersucht wird, ob die Beanspruchung die zulässige Anstrengung des Materials in keinem der möglichen Bruchquerschnitte überschreitet. Bei Inbetrachtziehung von Querschnitten, die oberhalb \(A \) gelegen sind, ist sinngemäß in der gleichen Weise vorzugehen, wie oben für den durch \(A \) gehenden Querschnitt dargelegt wurde.