A. Verpuffungsmaschinen.

I. Gasmaschinen ohne Verdichtung.

1. Lenoir.

Die selbständige konstruktive Gestalt des Lenoir-Motors beginnt erst in dem Augenblicke, als dessen Bau an leistungsfähige Lizenzfirmen übergeht. Die am gründlichsten durchdachte und nachmals allgemein vorbildlich gewordene Ausführungsform stammt von dem Pariser Maschinenfabrikanten MARIONI. In Deutschland hat die Firma G. KUHN in Stuttgart anfangs 1861 einen kleinen Probemotor nach MARINONIS Konstruktionszeichnungen ausgeführt und in Betrieb gesetzt, dann aber den Bau eingestellt, weil das Ergebnis nicht befriedigte. Fig. 2 bis 4, Seite 631 veranschaulichen diesen ersten und zugleich letzten Lenoir-Motor deutschen Ursprungs.

In der gezeichneten Kolbenstellung leitet im linken Zylinderraume der Schieber a das Ansaugen des Gasluftgemisches, am rechten Ende der Schieber b das Auspuffen der Verbrennungsgase ein. Der Einlaßschieber a wird von der Kurbelwelle aus durch eine, innerhalb einer Blechkugel zwischen zwei Gleitrollen laufenden Kurvenscheibe gesteuert, der Auslaßschlieber b mittels gewöhnlicher Exzenter angetrieben. Auf halbem Kolbenwege sperrt Schieber a die Gemischzuführung links ab; gleich darauf schließt der an der vorderen Kreuzkopfseite befestigte Schliefscheibe c zwischen den Schienen d und d' den Zündstromkreis, von wo an in dem Zünder e so lange Funken überspringen, bis Kontakt c rücklaufend die Schiene d wieder verlassen und über d" die rechte Zündkerze e' eingeschaltet hat. Das entflammte Gemisch verpufft mit etwa 4 at, höchstens 5 at Spannung; im Augenblick des Hubwechsels treten die Abgase mit einem Enddrucke von etwa 0,5 at aus. Gleichzeitig mit

Vgl. auch RICHARD, Les nouveaux Moteurs à gaz, I. Seite 1.

3) Nach Civil-Ingenieur 1861, Tafel 13.
dem Öffnen des linken wird der rechte Auslaßkanal durch den Schieber \(b \) geschlossen, wonach sich in dem durch den umkehrenden Kolben von Abgasen gereinigten rechten Zylinderende die Lade- und Verbrennungsvorgänge in obiger Weise wiederholen.

Betriebsergebnisse. a) Versuche von MAX EYTH, dermaligen Ingenieur der Firma G. KUHN in Stuttgart, an dem Probemotor, Fig. 2 bis 4, von rd. 108 mm (52° "bad") Bohrung und 167 mm (80° "bad") Kolbenhub. Die alten Maß- und Leistungsangaben der Quelle² sind in Tafel 2 mit aufgeführt.

Die Angaben für den nutzbaren Kolbendruck pₚ = pₐ nₐ und für den wirtschaftlichen Wirkungsgrad ηₐ der Maschine³ bei einem argenommenen Heizwert des Gases Hₒ = 5000 WE/ohm sind in dieser und den folgenden Tafeln als Vergleichswerte von mir angeführt worden.

Bei Versuchsreihe 5 blieb der Motor trotz reichlichsten Schmierens schon nach 14 Minuten wegen übermäßig Erhitzung bzw. Überlastung stehen. Fig. 5 gibt das Diagramm dieses Versuches, Fig. 6 dasjenige der Reihe 1 (Leerlauf) wieder. Die im Leerlaufdiagramm auffällende Spannungsabnahme zwischen Einlaßschluß und Verpfung geht bei Höchst-

²) Civil-Ingenieur 1861, Seite 198.

³) Erklärung der Wirkungsgrade auf Seite 9.
leistung infolge der geringeren Geschwindigkeit und größeren Erwärmung des frischen Gemisches fast ganz verloren. Die Verpuffungslinie steigt wegen des gasarmen Gemisches, der großen Kolbengeschwindigkeit im Zündaugenblick und der ungünstigen Zündkerzenlage nur allmählich an, so daß die Maschine trotz Verpuffung auf Hubmitte ziemlich ruhig läuft.

Nur bei den reichsten Gemischen tritt störendes Klopfen auf, weil dann die Verbrennung plötzlicher erfolgt und der hoch belastete Motor langsamer läuft. Fast alle Diagramme haben eine stark gewellte Ausdehnungslinie, deren Hauptursache in Schwingungen des Indikators zu suchen ist; die Diagramme geben daher auch die Verpuffungsspannung zu groß an.

b) Versuche von Tresca u. a. an Lenoir-Motoren französischen Ursprungs. Über die in Tafel 3 nicht ausgefüllten Zeilen fehlen in den Quellen bestimmte Zahlenangaben.

<table>
<thead>
<tr>
<th>Ausgeführt von</th>
<th>TRESCA</th>
<th>END.-GES. MÜHLHÄUSER, EKG.</th>
<th>AUSSCHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zylinderbohrung</td>
<td>mm</td>
<td>300</td>
<td>180</td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>mm</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td></td>
<td>47</td>
<td>81</td>
</tr>
<tr>
<td>Bremsleistung in : PSe</td>
<td></td>
<td>1,85</td>
<td>1,42</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st. in cbm</td>
<td></td>
<td>2,71</td>
<td>3,43</td>
</tr>
<tr>
<td>Gasgehalt der Ladung</td>
<td>%</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>Verpuffungsdruck</td>
<td>at</td>
<td>6,0</td>
<td>6,0</td>
</tr>
<tr>
<td>Durch das Kühlwasser abgeführte Wärme für 1 PSe/st. in WE</td>
<td></td>
<td></td>
<td>17 600</td>
</tr>
<tr>
<td>Schmierölverbrauch stdl.</td>
<td>kg</td>
<td>0,5</td>
<td>0,33</td>
</tr>
<tr>
<td>(p_s) in kg/qcm</td>
<td></td>
<td>0,425</td>
<td>0,33</td>
</tr>
<tr>
<td>(\eta_w) in %</td>
<td></td>
<td>4,65</td>
<td>3,67</td>
</tr>
</tbody>
</table>

Versuch 1 wurde durch Versagen der Zündung in 1 Std. 50 Min. dreimal unterbrochen. Für Versuch 4 gibt die Quelle noch einen Gasverbrauch von 2,7 cbm für die indizierte PS an, woraus sich ein thermischer Wirkungsgrad \(\eta_t = 4,25\% \) und ein mechanischer Wirkungs-
grad $\eta = 85.5\%$ berechnen ließe. Letzterer Wert ist aber für einen Lenoir-Motor sicher zu hoch. Ein Vergleich der Angaben für p in Tafel 2 und 3 erheilt, daß die von ETH geprüfte Maschine sehr gut gebaut und auch sonst in einem ungewöhnlich günstigen Betriebszustande gewesen sein muß, da diese die doppelte spezifische Leistung der Motoren französischen Ursprungs aufweist.

Die Wärmeverluste durch das Kühlwasser sind naturgemäß sehr groß, da das unverdichtet entzündete Gemisch während der Verpfung den halben Zylinderinhalt einnimmt und bis zur Hubgrenze nachbrennt. Wie beträchtlich und andauernd diese Wärmeabfuhr ist, zeigt das Diagramm Fig. 7, an einem Lenoir-Motor von 210 mm Bohrung und 420 mm Hub bei 45 Min.-Umdr. indiziert; die Ausdehnungslinie liegt schon von Anfang an und schnell zunehmend unter der Adiabate und verläuft annähernd nach dem Gesetz $p^{\frac{n}{n+1}} = konst.$

Zufällig gibt das Diagramm kurz vor Auspuff auch einige Fehlzündungen an, welche die Unzuverlässigkeiβ des Arbeitsverfahrens und der Zündung augenscheinlich machen.

2. Bisschop

verwertete um 1871 das Arbeitsverfahren Lenoirs in einer eigenartigen, ohne Anlehnung an die Dampfmaschinen entworfenen Ausführung; volle Selbständigkeit in der Konstruktion und glückliche Anpassung an die Bedürfnisse des Kleingewerbes zeichneten den Motor aus. Das Stammhaus Mignon & RoPert in Paris baute ihn nur in drei Größen für 3, 6 und 25 mkq Leistung; von der deutschen Lizenzfirma Buss, SomBART & Co. in Magdeburg wurden auch größere Modelle ausgeführt, doch ist der Absatz in Deutschland durdhr den wirtschaftlich überlegenen Flugkolbenmotor OTTOs sehr beschränkt worden.

Breite Kühlrippen umgeben den Arbeitszylinder, Fig. 8 und 9, in solcher Anzahl, daß seine äußere Kühlfläche 6 bis 8 fach vergrößert und ein Wassermantel entbehrt wird. Der Zylinder endigt oben als offenes, an einer Seite für die gekröppte Schubstange geschlitztes Geradführungsrohr, dessen Haube als Dichtöler für den Kreuzkopf gestaltet ist; Arbeitskolben mit drei Stahlringen und der Rohrschieber laufen ungeschmiert. Der Raum über dem Kolben läßt durch einen Seitenkanal die Kühlüft ein- und austreten. Die Ladung und Entladung des Arbeitszylinders steuert der unter Vermittlung der Schwinge a durch ein Ex-

1) Clerk, Theorie of the Gas Engine Seite 54 nach Journ. of the Franklin Inst.
2) In der Sitzung der französischen Zivil-Ingenieure vom 1. Juni 1860 stellte das Mitglied BARRAULT fest, daß Hugon zwei Jahre vor Lenoir eine Maschine gebaut habe, welche mit dem neuen Lenoir-Motor identisch sei und sich von diesem nur dadurch unterscheide, daß die Vermischung des Gases mit der Luft bereits vor der Einführung in den Zylinder geschehe. BARRAULT führt dann fort: „Der Motor von Hugon, welchen dieser geschickte Maschinenbauer mit solcher Sorgfalt studiert hat und wie ein Erfinder anwendet, um ein glückliches Resultat zu erreichen, war eine liegende Maschine; weder Zeit noch Geld ist gespart worden, aber Hugon hat darauf verzichten und vollkommenere Dispositionen ausführen müssen, um seine Ansprüchen genügende Lösung des Problems zu finden. Seine Maschine war in der Tat damals ganz mit denselben Mängeln und Nachteilen behaftet, welche ich an dem LENOIRSChen Motor gerächt habe... Es macht einen merkwürdigen Eindruck, zu sehen, wie Herr LENOIR mit vieler Anreizung eine Erfindung ausbeutet, welche Herr HUGON dadurch für ungenügend erklärte, daß er sie nicht einmal veröffentlicht hat!“. (Mémoires des Ingénieurs civils 1860, Seite 139.)

Das geschränkte Kurbelgetriebe bedarf noch einiger Hinweise. Der Riß Fig. 10 gibt die Zündstellung ausgezogen, die beiden Hubgrenzen gestrichelt an; er zeigt, daß die Verpuffung erfolgt, wenn die Schubstange mit der Zylinderachse fast gleichlaufend und zur Kurbel etwa normal gerichtet ist. Dadurch wird der Geradführungsdruck auf Kreuzkopf und Gleitbahn bedeutend vermieden und der größte Kolbendruck auf die Kurbel übertragen, wenn diese das günstigste Drehmoment hat. Bei derart geschränkten Schubkurbeln¹ ist $a > 2r$, und zwar der Bisschop-Motor der Kolbenhub um 12 bis 15% größer als der Kolbendurchmesser. Die Totpunktstellungen der Kurbel zulassen die Zapfenbahn in zwei ungleiche Teile, indem Winkel $x < \beta$. Bei der gegebenen Umdrehungsrichtung wird der größere Winkel β während des Kolbenauftriebes, der kleinere Winkel x während des Abtriebes zurückgelegt. Da nun die

¹) Mathematischer Nachweis hierfür im II. Teil, Seite 189.
Winkelgeschwindigkeit der Kurbel praktisch unveränderlich ist, so verläuft der Ansaug- und Verbrennungshub langsam als der Ausschubhub. Wärmetheoretisch würde das umgekehrte richtiger sein; anscheinend legte BisSCHOP aber auf die Entlastung der Gerädführung und auf den vermeinten Nutzen des verstärkten Kurbelantriebes den Hauptwert. Allerdings hat er mit seiner Getriebenanordnung manches Bedenkliche in Kauf nehmen müssen, was indes bei einem solchen Kleinmotor nicht sehr ins Gewicht fällt. KNÖKE gibt übrigens den Drehzinn der Kurbel umgekehrt an\(^1\) und gelangt demgemäß zu entgegengesetzten Folgerungen. Eine Bestätigung der Richtigkeit seiner Annahme habe ich nirgends finden können.

Betriebsergebnisse. Prüfungsberichte über BisSCHOP-Motoren sind nur spärlich erschienen, was bestätigt, daß auf den Gasverbrauch dieses Maschinenkein großer Wert gelegt worden ist.

a) Clerk fand bei einem Motor von 79 mm Bohrung, 292 mm Hub und 112 Umdr/min. eine Bremsleistung von rund 12 mkw\(^2\). Aus dem bei der Gelegenheit indizierten Diagrammbündel Fig. 11 erhält man als Durchschnitt ein \(p_v = 0,665 \text{ kg/qcm} \), womit sich weiter ergibt

\[p_v = 0,46 \text{ kg/qcm} \quad \text{und} \quad \eta_m = 81,5\%. \]

Das Diagramm ist jedoch ungewöhnlich schlecht entwickelt und dadurch die spezifische Leistung nicht in ihrer vollen Höhe. Das zeigt ein Vergleich mit dem von STARY veröffentlichten Diagramm Fig. 12, dessen Verpuffungsdruck rund 2,5 at und \(p_v \) fast 1,2 kg/qcm beträgt.

b) Prof. SCHÖTTLER und FRESE ermittelten bei einem ungefähr gleichgroßen Motor der genannten Magdeburger Fabrik:

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr/min. durchschnittlich</td>
<td>92</td>
<td>98,2</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>0,17</td>
<td>0,19 PSe</td>
</tr>
<tr>
<td>Gasverbrauch stündlich</td>
<td>0,715</td>
<td>0,882 cbm</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>4,2</td>
<td>4,7 cbm</td>
</tr>
<tr>
<td>Entsprechend (\eta_m) (bei (H_a = 5000 \text{ WE/cbm}))</td>
<td>2,73</td>
<td>2,43%</td>
</tr>
</tbody>
</table>

c) Prof. RICHTER in Karlsruhe stellte 1882 bei einem \(\frac{1}{2} \) pferdigen Motor ebenfalls deutscher Herkunft einen wesentlich geringeren Gasverbrauch fest,\(^3\) nämlich bei 80,8 Umdr. i. d. Min. und 0,445 PSe Bremsleistung für 1 PSe/st. nur 2,118 cbm. Garantiert war für die Nennleistung von \(\frac{1}{2} \) PSe ein Gasverbrauch von 1,2 cbm, der also um 12% unterschritten wurde. Der erheblich geringere Verbrauch dieser Maschine gegenüber den unter a) und b) behandelten ist auffallend; WITZ gibt den Gasverbrauch des gleichen Modells mit 3,7 cbm für 1 PSe/st. an.

Es müssen demnach bei dem Karlsruher Versuch noch besonders günstige Umstände (wie hoher \(\eta_m \) und \(H_a \)) mitgewirkt haben. Nach mechanischen Erwägungen sollte allerdings in jedem Falle der Gasverbrauch des so einfachen, mit entlastetem Kolbenschieber, ohne Stopfbüchsen usw. arbeitenden BisSCHOP-Motors niedriger sein, als bei den bezüglich der Eigenwiderstände erheblich schlechter gestellten Maschinen von LENNOIR und HUGON.

3. Otto und Langen.

Die LENNOIR-Maschine regte viele denkende Köpfe an, sich mit deren Vervollkommnung zu befassen oder auf eigenen Wegen besseres zu ersinnen; der Erfreueste unter ihnen war ein

\(^1\) KNÖKE, Kraftmaschinen des Kleingewerbes, 1. Aufl., Seite 220.
\(^2\) Clerk, Gas and Oil Eng. Seite 133.
\(^3\) Badische Gew.-Ztg. 1882, Seite 285.

Vor allem machten ihm die heftigen Zündstöße, die schon im Lenoir-Motor bei gasreichen Gemischen störend wirkten, bei verdichteten Ladungen aber unerträglich wurden, sehr viel zu schaffen. Otto trat diesen Erschütterungen entgegen, indem er die zwangläufige Verbindung des Arbeitskolbens mit dem Kurbelgetriebe durch ein nachgiebiges Glied in Form eines luftgefüllten Pufferzylinders ersetzte. Dieses sollte den Verpuffungsstoß elastisch aufnehmen und in einen nachhaltigen Kurbeldruck umwandeln. Der Zweck wurde indes nicht erreicht, was Otto schließlich so entmutigte, daß er Ende 1862 seine Versuche mit der direkttreibenden Maschine abbrach.

Der auf dieser Erfindung ruhende Patentschutz gab 1864 die Grundlage für eine geschäftliche Verbindung Ototos mit dem Ingenieur Eugen Langen, dem die nun beginnende planmäßige Entwicklung und konstruktive Durchbildung des atmosphärischen Gasmotors sehr wesentlich zuzuschreiben ist. Manche weit auseinander liegende Übergangsformen führten Anfang 1867 zu der gereiften Endkonstruktion Fig. 14, die noch rechtzeitig auf der zweiten Pariser Welastaufe 1865 der Öffentlichkeit übergeben werden konnte. Ihr standen 14 direktwirkende Gasmotoren französischen Ursprungs, sämtlich nach dem Lenoir- oder Hugon-Verfahren arbeitend, gegenüber. Die Aufnahme und Kritik war zunächst durchaus abfällig; wurde der Laie schon beim Anblick des in Bruchteilen einer Sekunde auffliegenden

Das Schaubild gibt den Aufbau des ersten Flugkolbenmotors wieder. Alle Einzelheiten sind gut durchdacht; teils von seltener Ursprünglichkeit; das Äußere ist gefällig, ja zierlich und wirkt nur durch die stilisierte Gestellform etwas untechnisch. Übrigens hatten die späteren größeren Modelle diese äußere Ausschmückung nicht mehr, wie die einem 1 1/2-pferdigen Motor letzter Ausführung entsprechenden Konstruktionsfig. 15 und 16 beweisen.

Auf dem vorderen Stirnende der tangential zur Zylinderbohrung gelagerten Schwungdrehwelle a sitzt die, nur durch das Zahnsperrchebel b gehaltene Steuerungskurbel c. Von ihrem Zapfen führt die Stange d, deren Blattgelenk d' Beachtung verdient, zu dem Flachsieber e; derselbe Kurbelzapfen vollzieht mittels Hebels f und Stege g auch den kurzen Saughub des Arbeitskolbens, wenn die Knagge h der gezahnten Kolbenstange i gegen Ende des Abtriebes auf diese Stelze g trifft. (Die Strichandeutung in Fig. 15 entspricht dem Anhubweg des Hebels f und der Knagge g.) Kolbenstange i wird in dem Gleitbock k geführt; unter letzterem sind als Hubgrenze elastische Ringe vorgesehen, deren Wirkung zuweilen noch durch besondere Prellbügel unterstützt wurde. Mit dem Hebel f ist der Ausräcker l verbunden, der unmittelbar nach jeder Verpuffung das Kurbelgesperre b durch Ausheben der Klinke m löst. Eine solche Unterbrechung in der Steuerungsbetätigung ist nötig, weil je nach der Belastung auf einen Kolbenflug 3 bis 6 Wellenumdrehungen kommen, bei denen der Schieber e in einer bestimmten Stellung ruhen muß. Sperrklappe m steht ferner unter dem Einflusse eines Fliehkraftreglers, der bei zu großer Geschwindigkeit durch den Riegel n das Einklicken des Kurbelgesperres b und damit den Ladehub des Kolbens zeitweilig verhindert. Als Vermittlungsglied zwischen Kolbenstange i und Welle a wird das sogenannte Langensche Schaltwerk o benutzt, eine sinnreiche Klemmkupplung, deren Erklärung den Einzelfiguren 17 und 18 überlassen werden kann.

Der Motor arbeitet nun so: In der tiefsten Kolbenstellung ruht der Schieber e bei noch geöffnetem Auslasskanal in seiner Mittellage; das Zurücksaugen von Abgasen wird durch ein in die Auspuffleitung eingebautes Rückschlussventil p verhütet. Dreht man das Schwungrad, so hebt das Gestänge f, g und h den Kolben um 1/12 bis 1/10 seiner größten Flughöhe an. Während der Schieber e durch seine untere Grenzlage geht und den Einlaß
öffnet, entsteht im Zündkanal bereits die Übertragungsflamme, welche sich sogleich nach Schluß des Eintrittskanales der angesaugten Ladung mitteilt. Die Verpuffung des reinen, reichen Gemisches erfolgt augenblicklich und schleudert den Kolben in $\frac{1}{3}$ bis $\frac{2}{3}$ Sekunde empor, wobei die Stange i den entkuppelten Zahnkranz o leer rückwärts dreht. Nach

$\frac{1}{3}$ bis $\frac{2}{3}$ Flughöhe haben sich die Verbrennungsgase auf atmosphärische Spannung ausgedehnt; der Kolben zehrt dann von der Trägheit seiner Massen, bis deren lebendige Kraft vernichtet ist, worauf der Niedergang beginnt. Gegen Ende des Auffluges erzeugt die Überexpansion der Verbrennungsgase im Zylinder einen Unterdruck, der zusammen mit der Kolben- schwerkraft beim Abtrieb die äußere Arbeit liefert. Gleichzeitig mit der Kolbenstange i wechselt auch der Zahnkranz o seine Bewegungsrichtung und wird dadurch mit dem festen Schaltwerk o' gekuppelt. Der niedergehende Kolben treibt hierbei die Schwungradwelle a an, bis der Unterdruck im Zylinder — welcher jetzt auch durch die Abkühlung bzw. Zusammenziehung der Gase vorteilhaft beeinflußt wird — verbraucht ist. Die bis dahin ziemlich gleichmäßige, der Umfangsgeschwindigkeit des Zahnkrankes o entsprechende Fallgeschwindigkeit des Kolbens nimmt dann ab, was sofort eine Entkuppelung des Kranzes o von dem mit unveränderter Geschwindigkeit und in bisheriger Richtung weiterkriechenden festen Schaltstück o' verursacht. Nachdem der Unterdruck im Zylinder aufgehört hat, öffnet sich das selbsttätige Ventil p, und der durch seine Schwere langsam
weitersinkende Kolben drückt auf diesem Wege die Verbrennungsgase ins Freie. Nur ein kleiner Rest wird nach Abdeckung des seitlichen Zylinderkanals zurückgehalten, auf dem der Kolben zuletzt zur Ruhe kommt. Steuerkurbel \(\varepsilon \) ist schon nach der ersten Umdrehung des Aufwärtshubes durch Abstreifen der Klinke \(m \) an Ausrücker \(f \) von Welle \(a \) gelöst worden und seitdem untätig in der Mittellage verbleiben; erst wenn der Kolben nahe der unteren Hubgrenze die Stelze \(g \) niederdrückt, gibt Ausrücker \(f \) die Sperrklinke \(m \) wieder frei, die alsdann die Verbindung zwischen Schwungradwelle und Steuerkurbel von neuem herstellt. Von da an wiederholen sich alle Arbeitsvorgänge wie vorher, nur daß der Saughub statt von Hand durch die lebendige Kraft des Schwungrades bewirkt wird.

Der Flachschieber \(e \) hat drei übereinander liegende Kanalgruppen, von denen die obere dem Einlaß, die mittlere dem Auslaß und die untere der Zündung dient. Die beiden Gasleitungen für die Ladung und für die Übertragungsflamme sind an das Schiebergehäuse, die Auspuffleitung ist an den Schieberdeckel angeschlossen.

Bei den kleinsten Modellen war die beschriebene selbsttätige Regelung nicht angewendet; an ihrer Stelle wurde die Geschwindigkeit von Hand durch einen Drosselhahn in der Auspuffleitung geregelt. Bei ganz geöffnetem Hahn sinkt der Arbeitskolben schnell nieder und die Ladungen und Verpuffungen folgen sich kurz aufeinander; je mehr der Auslaßhahn geschlossen wird, desto langsamer sinkt der Kolben und um so größer sind die Zündungsabstände. Eine Leistungsregelung durch das Gemisch ist nicht zweckmäßig, da bei reichster Ladung der Kolben zu hoch fliegt, bei armen Ladungen aber die Zündung unsicher und die Wärmeausnutzung schlechter wird. Die meisten Triebeile der atmosphärischen Maschinen machten ein unangenehmes Geräusch (Meidinger vergleicht es in einem Versuchsbericht mit „Ambosschlägen“), welches bei erster Näherung sehr belästigte; man gewöhnte sich aber allmählich so daran, daß man in gewerblichen Betrieben das Geräusch kaum noch empfand. Für den Absatz war fast noch hinderlicher, daß der Motor wegen seines Flugkolbens eine selten anzutreffende Höhe des Aufstellungsräumes verlangte (z. B. für den 1/4-pferdigen Motor Fig. 15 und 16 mindestens 3,5 m!); war solche nicht vorhanden, so mußte die Decke des Maschinenhauses durchbrochen und in dem darüberliegenden Raume freie Bahn für die Zahnstange geschaffen werden. Trotzdem fand der Flugkolbenmotor in mehr als 6000 Ausführungen von \(\frac{1}{4} \) bis 3 PSe mit rund 6000 PSe Gesamtleistungsabsatz, von denen einzelne noch gegenwärtig im Gebrauch zu finden sind.

Betriebsergebnisse. OTTO und LANGENS Flugkolbenmaschinen sind wiederholt genauen Leistungsprüfungen unterzogen worden; am umfassendsten waren

a) Versuche von Prof. MEIDINGER, anfangs 1868 an einem 1/4-pferdigen Motor ausgeführt, deren Betriebsbeobachtungen sich auf mehrere Wochen erstreckten.

Bauliche Verhältnisse des Motors: Bohrung 150 mm, größte Flughöhe 980 mm, Saug- anhub 103 mm; Gewicht des Kolbens mit Stange 21,83 kg, des Schwungrades 160 kg bei 1,260 m Durchmesser.

Tafel 4.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellen-Ümldr. i. d. Min.</td>
<td>106</td>
<td>90</td>
<td>75</td>
<td>60</td>
<td>40</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Kolbenspiele i. d. Min.</td>
<td>42</td>
<td>37</td>
<td>34</td>
<td>29</td>
<td>20</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>Bremsleistung (mkg)</td>
<td>47,7</td>
<td>44,5</td>
<td>40,1</td>
<td>35,5</td>
<td>26,4</td>
<td>18,4</td>
<td>13,4</td>
</tr>
<tr>
<td>Gasverbr. mit Zündfl. stdl. (cbm)</td>
<td>0,546</td>
<td>0,51</td>
<td>0,463</td>
<td>0,382</td>
<td>0,258</td>
<td>0,212</td>
<td>0,283</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/Std. (cbm)</td>
<td>0,835</td>
<td>0,88</td>
<td>0,81</td>
<td>0,757</td>
<td>0,742</td>
<td>0,993</td>
<td>1,39</td>
</tr>
<tr>
<td>Gasausbr. der Ladung (%</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>(p) in kg/cm²</td>
<td>0,395</td>
<td>0,415</td>
<td>0,416</td>
<td>0,425</td>
<td>0,46</td>
<td>0,35</td>
<td>0,16</td>
</tr>
<tr>
<td>(n) in %</td>
<td>13,7</td>
<td>13,8</td>
<td>14,2</td>
<td>15,2</td>
<td>15,4</td>
<td>11,6</td>
<td>8,25</td>
</tr>
</tbody>
</table>

Die wirtschaftlich günstigste Umlaufzahl war 75 in der Minute. Bei Versuchsreihe 6 und 7 arbeitete der Motor unter gleicher Belastung einmal mit Aussetzern und dann mit Gemischverdünnung; die Verschlechterung der Wärmeausnutzung im letzten Falle ist beträchtlich.

Die beiden Zündflammen verbrauchten stündlich 0,0424 cbm Gas. Da dieser Wert von der Belastung und Größe des Motors unabhängig ist, so wurde der Gesamtverbrauch in

einer jetzt ungebräuchlichen, für solche Kleinmotoren aber an sich richtigen Weise auf die PSe/st. zurückgeführt, die sich am einfachsten durch die Formel verständlich machen läßt¹):

\[
\text{Gasverbrauch} = \frac{\text{Gesamtverbrauch} - \text{Lampenverbrauch}}{\text{Bremsleistung in PSe}} + \text{Lampenverbrauch.}
\]

Für Versuchsreihe 1 ist z. B. der

\[
\text{Gasverbrauch für 1 PSe/st.} = \frac{0,546 - 0,0424}{0,635} + 0,0424 = 0,835 \text{ cbm.}
\]

Nach der allgemein gewohnten Berechnung würde aber sein:

\[
\text{Gasverbrauch für 1 PSe/st.} = \frac{0,546}{0,635} = 0,860 \text{ cbm},
\]

also um rund 3% mehr. Bei Leistungen über 1 PS tritt ein entgegengesetzter Unterschied ein.

Für die 3. Versuchsreihe berechnet MEIDINGER die Wärmeabfuhr durch Kühlwasser und Strahlung bei Verdunstungs-Rückkühlung zu 650 WE ständig oder rund 1200 WE für 1 PSe/st., und unter Annahme eines Heizwertes des Leuchttages von 6300 WE/cbm schätzungsweise folgende Wärmebilanz:

\[
\begin{align*}
13 \text{ WE in Nutzarbeit umgewandelt,} \\
7 \text{ WE durch Reibung u. dgl. verzehrt,} \\
25 \text{ WE durch das Kühlwasser und} \\
5 \text{ WE durch die Abgase abgeführt.}
\end{align*}
\]

Die beiden letzten Posten sind zweifellos unrichtig, und zwar der eine viel zu groß und der andere viel zu klein.

Die Auspuffgase hatten einen unangenehmen Geruch, der das Vorhandensein unverbrannter Bestandteile verriet. Ihre Temperatur betrug:

bei 110 90 60 40 Wellenumdrehungen i. d. Min.
und 45 37 28 20 Kolbenaufflügen i. d. Min.
etwa 220 202 181 140\°, im Drosselhahn der Leitung gemessen.

Bei reichlicher Schmierung wurden in 12 Betriebshunden nur 0,125 kg Öl verbraucht; bei sparsamer Ölzuführung trat eine geringe Abnahme der Leistung bzw. Zunahme des Gasverbrauches ein.

Die mittlere Kolbengeschwindigkeit eines vollen, also zweihübbigen Kolbenspieles berechnet sich z. B. für Reihe 3 zu 1,11 m/sek; die Auffluggeschwindigkeit hingegen überschreitet 15 m/sek, da der Kolben die Flughöhe von 0,980 — 0,103 = 0,877 m in 0,176 Sekunde zurücklegt.

b) **Versuche von Clerk**, an einem 2 pfördigen Motor gleicher Bauart²):

<table>
<thead>
<tr>
<th>Bohrung</th>
<th>12 1/2" = 317 mm</th>
<th>Gasverbr. ohne Zidfl. f. 1 PSI/st. 0,695 cbm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größte Flughöhe</td>
<td>40 1/2" = 1030 mm</td>
<td>Gasverbr. ohne Zidfl. f. 1 PSe/st. 1,020</td>
</tr>
<tr>
<td>Kolbenspiele i. d. Min.</td>
<td>28</td>
<td>Gasverbr. der Zündfl. stündl. 0,834</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>2,93 PSI</td>
<td>Gasgehalt der Ladung</td>
</tr>
<tr>
<td>Gebremste Leistung</td>
<td>2,00 PSI</td>
<td>Verpuffungsdruck</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad (\eta_m) = 68%</td>
<td></td>
<td>Mittl. indiz. Kolbendr. (p_k) = 0,585 kg/qcm,</td>
</tr>
<tr>
<td>was sich weiter berechnen läßt:</td>
<td></td>
<td>woraus sich weiter berechnen läßt:</td>
</tr>
<tr>
<td>(p_k) = 0,397 kg/qcm, Wirkungsgrade (\eta_k) = 16,5% und (\eta_m) = 11,2%. Die durchschnittliche Kolbengeschwindigkeit eines vollen Spieses ist 0,96 m/sek.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²) Clerk, Gas and Oil Eng. Seite 141.

GöLkKer, Verbrennungskraftmaschinen. 3. Aufl. 41.
Diagramm Fig. 19, bei diesem Versuch indiziert, gibt überraschende Einblicke in die inneren Arbeitsvorgänge. Das von a bis b angesaugte Gemisch verpufft augenblicklich mit etwa 3,8 at Höchstdruck; in Punkt c ist jedoch die Verbrennung noch nicht vollendet, sondern sie hält noch während des Ausdehnungshubes an. Etwa auf halbem Kolbenwege hört der Überdruck im Zylinder auf; von d bis e wirkt nun die lebendige Kraft des zwischen Punkten b und d emporgeschleuderten Kolbens, welche die Verbrennungsgase bis auf etwa 0,6 at Unterdruck „dünntzieht“, also übereinander ließ. Die Abkühlung der Gase hat bis dahin noch keinen wesentlichen Einfluß auf die Spannung im Zylinder gehabt, da die Wärmeabfuhr durch das anhaltende Nachbrennen der Ladung größtenteils oder auch ganz ausgeglichen wird. Dieser Einfluß tritt erst beim Kolbenaufsatz und Rückverdünnung der dünn-gezogenen Verbrennungsgase in der Diagrammfläche d e f hervor. Zwischen Punkt f und c vollzieht sich das Ausschieben der Abgase; das auf dieser Strecke sichtbare Ansteigen der Gegendrucklinie ist in der schlechtern Schieberbewegung und in der Trägheit der Kegelmasse des Rückschlagventiles begründet.

Die erste, in einem deutschen Fachblatt erschienene Abhandlung über den Langen & Otto-Motor brachte das Diagramm, Fig. 20). Es ist seitdem gewissermaßen als Normaldiagramm dieser Gasmaschinenart in die motortechnischen Handbücher aufgenommen worden, obwohl es nur ein verzerrtes Zulassissypigramm ist. Denn wie kann nur die Ansauglinie a b über und die Ausschublinie g a unter der Atmosphäre liegen, da doch beide im entgegengesetzten Sinne durch die beträchtlichen Schieber-, Ventil- und Rohrwiderstände hervorgerufen werden? W. bleibt die Verpuffungsarbeit b c d e, die nur zu 1/40 in der Fläche d e f wiederscheint? Nach dem Diagramm war die Verpuffung erst nach 20% (statt normal nach rund 10%) Kolbenweg beendet; infolge dieser Spätzündung und des anschließenden Nachbrennens erreichte die Ausdehnung nach 3/4 (statt normal nach halben) Hube atmosphärische Spannung, und da die bis jetzt beschleunigten Kolbenmassen während des restlichen Viertels des Auftriebes nicht mehr ausschwingen konnten, so mußten sie durch die Prellkissen mit Gewalt bei den handbüchern.

Kurz vor Erscheinen des „neuen Otto-Motors“ trat Gilles mit einer geräuschenlosen Flugkolbenmaschine hervor, die gewissermaßen das atmosphärische mit dem direktwirkenden Arbeitsverfahren in sich vereinigte. Der Motor wurde in Deutschland von der MASCHINEN-

Fig. 21—23. Gilles-Flugkolbenmotor, erbaut von der MASCHINENBAU-ANSTALT HUMBOLDT in Kalk.

BAU-ANSTALT HUMBOLDT in Kalk bei Köln für 1/4 bis 4 PS Leistung bei 50 bis 35 Umdr. i. d. Min., über 2 PS als Zwilling mit 180° Kurbelwinkel, ausgeführt. Von 2 PS an erhielten die Motoren einen weiten Blech-Zylindermantel, der den ganzen Kühlwasservorrat aufnahm; bei kleineren Maschinen genügte die Luftkühlung. Die baulichen Verhältnisse geben Fig. 21—23 nach Konstruktionszeichnungen der genannten deutschen Lizenzfirmen wieder.

41°
Das 1/2 pferdige Modell hatte 180 mm Bohrung, 220 mm Hauptkolbenhub und 325 mm Flughöhe des Kolbens.

Die Umkehrbewegung des Kolbens a bringt das selbsttätige Klemmgespärre g auf der Stange b zum Eingriff, wodurch einstweilen deren Abtrieb verhindert wird. Wenn der Hauptkolben c seinen unteren Topptunt erreicht, herrscht im Zylinder infolge der Überexpansion der Verbrennungsgase ein Unterdruck, der etwas größer als bei der Otto & Langen-Maschine sein wird; die auf der Außenseite des Kolbens c wirkende atmosphärische Spannung treibt ihn Nutzarbeit verrichtend aufwärts. Nach etwa 7/8 des Aufgeschobens hebt eine zweite Kurvenscheibe durch Stange h und Hebel i die Klemmbacken g so weit an, daß die Sperrung der Kolbenstange b aufhört. Der Flugkolben a sinkt hierauf nieder und treibt dabei zusammen mit dem entgegenkommenden Kolben c die Abgase durch den Auslaß a ins Freie, bis er den Kanal c' überdeckt hat. Auf dem dann noch zwischen den beiden Kolbenböden verbliebenen kleinen Abgaarest über dem Hauptkolben c schwebend, sinkt der Flugkolben a langsam in seine tiefste Stellung, wonach Kolben c wie vorher ein neues Arbeitspiel beginnt. Die Geschwindigkeitsregelung beruht auf zeitweiligem Zündungsausfall. Wird die normale Umlaufzahl überschritten, so stützt der an der Ölbremse k aufgehängte und vom Kreuzkopf betätigte Schwinghebel l das Schiebergestänge bei geschlossenem Einlaß so lange ab, bis die gewöhnliche Geschwindigkeit wieder erreicht ist.

Der Gilles-Motor besaß eine etwas bessere spezifische Leistung und einen ruhigeren, gleichmäßigigen Gang, wie die Deutzer Flugkolben-Maschine; andererseits war aber seine Bauart noch zusammengesetzter und seine Flughöhe noch größer, als bei jener. (Ich habe noch anfange der neunziger Jahre einen 1 pferdigen Motor von GILLES untersucht, der einen 5 m hohen Aufstellungsräum verlangte.)

Betriebsergebnisse. Bestimmte zahlenmäßige Betriebsergebnisse habe ich weder vom Erfinder noch von den früheren Erbauern erhalten können, was nicht gerade für eine Überlegenheit des Gilles-Motors spricht. MUSIL gibt ohne näheren Nachweis den Gasverbrauch zu 3/4 obm für ein Stundenpferd an. 1)

II. Gasmassen mit Verdichtung.

Schon in den alten Patentschriften von LEBON, WRIGHT, BARNETT u.a. (s. Tafel 1, Seite 628) ist die Verdichtung beiläufig berührt; klare Erkenntnis ihres Einflusses auf die inneren Arbeitsvorgänge und bestimmte Vorschläge zu ihrer Verwertung treten erst nach dem Erscheinen des Lenoir-Motors hervor.

Gelegentlich einer Kritik der Theorie dieser Gasmaschine kommt der k.k. Kunstmeister GUSTAV SCHMIDT in einem Vortrage im Wiener Polytechnischen Institut als Erster zu dem Schluß: „… Viel günstiger würde sich aber das Resultat stellen, wenn man eigene Kompressionspumpen durch die Maschine betreiben ließe, welche die kalte Luft und das

1) MUSIL, Motoren für das Kleingewerbe, 1878, Seite 116.
kalte Gas vor dem Eintritt in die Maschine auf etwa 3 at komprimieren, wodurch eine weit stärkere Expansion und Ausnutzung der Verbrennungswärme möglich gemacht würde ... 1).

Nur eine konstruktive Ausführungsform dieses Grundgedankens ist der Inhalt eines später gegen Otto gerichteten Patentes von Million 2); neu und wichtig aber ist darin die vorgeschlagene Verlängerung des Zylinders als Verdichtungsraum, in dem das kurz vor Kolbenumkehr durch Pumpen eingepreßte Gemisch entzündet und verbrannt werden soll.

Anfangs 1862 erschien eine kleine Druckschrift des französischen Eisenbahn-Ingenieurs Alph. Beau de Rochas, die hauptsächlich scharfsinnige Betrachtungen über die Wärmeeinsatz in Dampfmaschinen enthielt, in den dabei entwickelten Verbesserungsvorschlägen aber auch die Vorteile der verdichteten Ladung für den Gasmotorenbetrieb kurz betonte. Beau de Rochas empfiehlt sogar bereits, die Verdichtung bis zur Selbstzündung zu treiben, für welche er den erforderlichen Enddruck auf 6,5 bis 6,9 at und den zu erwartenden höchsten Verfugungsdruck auf 30 at schätzt 3).

In den bis dahin entstandenen Gasmaschinen ließ sich die Verdichtung des Gemisches vor der Entzündung nicht durchführen; es mußten neue, besondere Bauarten gesucht werden. Aus der hierdurch eingeleiteten regen Erfindertätigkeit ging eine eigenartige Maschinenart hervor, die zwischen je 2 Verbrennungs- und Ausdehnungshöhe des Kolbens ein der Verdichtung des Ladungsgemisches dienendes Kolbenspiel im Motorzylinder vollzog, diesen also zugleich als Pumpe benutze. Dabei erhöhte sich die für einen vollständigen Arbeitsweg erforderliche Hubzahl auf 4, was schon bald die Bezeichnung „Viertakt“ für dieses Verfahren aufkommen ließ 4).

1. Viertaktmaschinen.

Der Gedanke des Viertaktes stammt von dem vorhin genannten Ingenieur der französischen Südbahn Alphons Beau de Rochas, der 1861 in einer 53seitigen Handschrift „Nouvelles recherches...“ 5) die Theorie dieses Arbeitsverfahrens eingehend und klar darlegte. Ich gebe in Fig. 24 eine auf zwei Drittel Naturgröße verkleinerte photographische Nachbildung dieser für die Entwicklung des Motorbaues so bedeutungsvollen Stelle (Seite 30 Zeile 4 bis Seite 31 Zeile 17) der Handschrift und deren Übersetzung ins Deutsche.

Unstreitig ist hier nicht nur der einfache, sondern auch der doppeltwirkende Viertakt bereits bestimmt beschrieben. Allerdings steht wohl fest, daß Beau de Rochas über die zur Durchführung seiner Arbeitsweise nötigen baulichen Mittel im Unklaren geblieben ist; er würde sonst kaum unterlassen haben, wenigstens die so wesentliche Gestaltung des Zylinders als Verdichtungsraum und den Einfluß der in diesem verbleibenden Abgase auf

2) In England auf den Namen des Patentagenten Newton unter Nr. 1840/1861 erteilt.
3) Die betreffenden Stellen lauten in Übersetzung: „Man kann mithin theoretisch eine ebenso unendliche Ausnutzung der elastischen Kraft des Gases erzielen, wenn man dieselben vor der Entzündung unendlich komprimiert, wie man eine unbegrenzte Ausnutzung der elastischen Kraft des Dampfes erzielen könnte, wenn man seine Expansion ins Unendliche vergrößerte. In der Praxis erreichte man indessen bald eine unüberschreitbare Grenze. Es ist diejenige, bei welcher die durch die vorhergehende Kompression erzeugte Temperatur die Selbstzündung bewirkt... Auf alle Fälle wird die Kompression die Selbstzündung befördern dadurch, daß sie das innige Genügen der Gase befördert und daß sie die Temperatur erhöht. Wenn die Anfangstemperatur einen Druck von 5 bis 6 at im Dampfkessel entspricht, so würde die Selbstzündung bei einem Kompressionsgrade eintreten, welche ungefähr ein Viertel des ursprünglichen Volumens beträgt, wenigstens wenn man die Wirkung der Strahlung vernachlässigt. Der Druck der Entzündung würde dann kaum auf 30 at sich erhöhen..." 4)
5) Der volle Titel des Schriftenlautes: „Nouvelles recherches sur les conditions pratiques de l'utilisation de la chaleur et en général de la force motrice. Description sommaire de quelques perfectionnements à introduire dans les générateurs à vapeur ou les machines à gaz." Das Heft ist auf graphischem Wege in nur 300 Abzügen hergestellt; das Titelblatt gibt weder den Verfasser noch den Verleger an; ersterer ist nur auf dem handschriftlich angefertigten äußeren Deckeltitel vermerkt. Ansehnlich hatte der Verfasser das Absatzgebiet der Schrift von vorherein begrenzt; sie wurde auch erst 20 Jahre nach ihrem Erscheinen anläßlich der Deutschen Prozesse um das Viertaktmonopol öffentlich bekannt.
den Verbrennungsvorgang zu berühren. Eine solche Zylinderverlängerung war an sich zwar nicht mehr neu, viel mehr schon ein Jahr früher von MILLON bei Beschreibung seiner Pumpen-Kompressionsmotoren erwähnt worden (s. Seite 645); für diese ist aber der Ver- dichtungsraum nur eine von mehreren möglichen Ausführungsformen, wohingegen der- selbe für Viertaktmaschinen unerlässlich ist.

La question étant ainsi posée, le seul rapport-véritablement pratique consiste évidemment à n’employer qu’un seul cylindre Vadell pour qu’il fasse le plus grand possible, même pour éviter le mouvement arrière de gaz à leur minimum absolu. Mun pour un même côté du cylindre, on sa matérielle continue à exercer l’opération suivante: Dans une position de quatre coups consécutifs,
1er aspiration, pousson, une course entière du piston,
2e compression, pousson, la course suivante,
3e inflammation, au point mort de débuter l’opération suivante,
4e répétition, Deux gaz brûlés dans le cylindre au quart du
forme suivant.

Le même opération se reproduisant après coup, l’allure est la suivante. Dans une même position du côté du piston, il convient
toujours une série particulière de manœuvres à simple effet ou à double effet, mais qui s’effectue évidemment de la manière suivante: Grand cylindre possède au même temps qu’à celle plus importante, venue de la compression précédente. En tenant sur le même temps que la
rotation du piston, la plus grande possible, sur-tout au diamètre
précédent, la colonne centrale le travail qui automaque se produira
puis ce qu’elle peut par indétermination d’indice.

Fig. 24. Photographische Nachbildung aus BEAU DE ROCHAS „Nouvelles recherches.
(Siehe 30, Zeile 4 von unten bis Seite 31, Zeile 17 von oben.)

Übersetzung.

„Die gestellte Frage ergab offenbar als allein wahrhaft praktische Anordnung den Gebrauch nur
eines einzigen Zylinders, zuerst damit derartige so groß wie möglich sei, sodann um die Bewegungswider-
stände der Gase auf ihr absolutes Minimum zu vermindern. Man wird dann naturgemäß dazu geführt,
auf derselben Zylinderseite im Verlaufe von vier aufeinanderfolgenden Kolbenhuben folgende Verricht-
ungen vorsuchen:
1. Ansaugen während eines ganzen Kolbenhubes;
2. Kompression während des darauf folgenden Hubes;
3. Entzündung im toten Punkt und Expansion während des dritten Hubes;
4. Herausschieben der verbrannten Gase aus dem Zylinder beim vierten
und letzten Hube.

Wenn die gleichen Verrichtungen nachträglich auf der anderen Seite des Zylinders in einem gleichen
Verlaufe von Kolbenwegen durchgeführt werden, so entsteht eine eigenartige einfachwirkende, man
könnte sagen halbhaltige Maschine, welche augenscheinlich der Bedingung des möglichst großen Zy-
linders und gleichzeitig der noch viel wichtigeren der vorhergehenden Kompression genügt. Man sieht
zugleich, daß die Kolbengeschwindigkeit in Verhältnis zum Durchmesser die größtmögliche ist, weil
man in einem einzigen Hube die Arbeit verrichtet, welche sonst zwei benötigen würde, und daß man offen-
bar nicht mehr erzielen kann…“

Otto (1861).

Um dieselbe Zeit, als die geistreichere theoretische Abhandlung BEAU DE ROCHAS erschien, ging ORTO an die praktische Ausführung des Viertaktes. Er benutzte hierzu eine
nach seinen Angaben von dem Mechaniker ZONZ in Köln gegen Ende 1861 hergestellte
Vierzylindermaschine, deren Wesen die Fig. 25 skizziert 1). Jeder Zylinder hat außer dem mit der Schubstange verbundenen Hauptkolben a einen losen Hilfskolben b, der in ersterem und dessen höhler, als Pufferzylinder gestalteten Stange c geführt wird. Diese nachgiebige Kolbenverbindung bezweckt hauptsächlich, das Kurbelgetriebe von dem so gefütterten „Explosionstoß“ zu entlasten. Die Verpuftung trifft nur den Flugkolben a unmittelbar und treibt ihn nach außen, wobei er auf dem Luftpuffer im Zylinder c aufgefangen wird und unter Vermittlung des Hauptkolbens a das Kurbelgestänge antreibt. Ferner soll der lose Hilfskolben b den Zylinder gründlich von Verbrennungsgasen reinigen, indem beim Ausschubhube das Luftkissen in c rückwärts expandiert und den Kolben b bis ans Ende des Verdichtungsraumes drängt. Für die Durchführung der einzelnen Arbeitsvorgänge war der Viertakt beabsichtigt, zur Erleichterung einer größeren Leistung und gleichmäßigeren Kurbeldrehkraft die Vierzylinderform vorgesehen. Die Wirkungsweise ergibt sich im übrigen aus den Eintragungen in Fig. 25.

Reithmann.

1) Nach einer alten Denkschrift der Gasmotoren-Fabrik Deutz

Fig. 26 ist das Gesamtbild dieser ältesten Viertaktmaschine nach einer mir von REITMANN überlassenen Photographie, und zwar in dem ursprünglichen Zustande des Jahres 1873. Die Halbwirkung verrät sich schon durch die Übersetzung der Steuerungsräder. Die beiden Gestellfüße, — unverkennbar nach zufällig vorhandenen Modellen eines Windenbockes gegossen — sowie der Zylinder mit Schieber und verschiedene kleine Teile hatten vorher schon einem doppeltwirkenden Flugkolbenmotor angehört; dadurch und durch die versuchsweise Ermittlung aller wesentlichen Bauverhältnisse erklärt sich die zusammengefügtes, planlose Konstruktion des Ganzen.

Die maßstäblich richtigen Konstruktions-Fig. 27 bis 29 sind nach alten Urzeichnungen angefertigt, deren Kenntnis ich Prof. SCHÖFTER in München verdanke. Unterhalb des Scheibenkolbens a befindet sich der Verdichtungsraum b, dessen Boden das Auslaßventil c aufnimmt. Der Raum über dem Kolben bleibt unbenuzt. Das Luftteinlaßventil d und der kleine Verteilungschieber e der Gasleitung führen auf dem Umwege durch den Hauptschieber f in den Verdichtungsraum b. Ein Pumpehen g versorgt die Zündflamme h’ im Schieber f mit Gasluftgemisch von solcher Spannung, daß die Flamme durch den Verdichtungsdruck im Zylinder nicht ausgeblass wird. Die zweite Zündflamme h’ im Schieberdeckel ist unmittelbar an die Gasleitung angeschlossen, aus der auch der Zündkanal des Schiebers f gespeist wird. Schieber, Ventile und Pumpehen entnehmen ihrem Antrieb der mit halber Geschwindigkeit der Kurbelwelle umlaufenden Steuerwelle i, und zwar Hauptschieber f und Gaspumpe g der Stirnkurbel k (20 mm Radius), Gasschieber e der Kurvenscheibe l, deren Umgrenzung den eigenartigen Betätigungsverlauf erkennen läßt, sowie endlich das Einlaßventil d und das Auslaßventil e den Nocken m bzw. n.

Nebenfigur 29 zeigt einen Schnitt durch den Schiebeckausten; die verwinkelten Kanalanordnung ruhrt größtenteils noch von dem erstversuchten Flugkolbenmotor her. Aus dem Einlaßventil d gelangt die Luft durch den Kana l’ des Schieberspiels in den Mischkanal f’ des Hauptschiebers f; gegenüber tritt das Treibgas aus dem Hilfschieber e durch den Kanal d’ in den Kanal f’ und aus diesem durch ein gelochtes Rohr in den Mischkanal f’. Letzterer mündet unten bei entsprechender Schieberstellung in den Verdichtungsraum b. Die Leitung o führt das Präffgas aus Pumpehen g zu dem Brenner der Zündflamme h.

Auf dem ersten Drittel des Hubes saugt der Kolben durch Ventil d Fig. 27 nur Luft an; dann legt Hilfschieber e den Hauptgaskanal frei und es findet nun bis zum Hubende das Ansaugeigen Gemisches statt. Im oberen Totpunkt schließt sich das Einlaßventil d und der Schieber e den oberen Gaskanal, doch bleibt der untere Kanal noch geöffnet bis nach der Entflammung. Diese erfolgt, nachdem das Gemisch durch den niedergehenden Kolben verdichtet, etwas hinter der inneren Kolbenstellung, in welchem Augenblick auch in Pumpe g die Höchstspannung erreicht ist. Nach beenderter Ausdehnung beginnt im oberen Totpunkt der Ausschub der Abgase, der bis zur unteren Hubgrenze andauert.

Der Motor hat mit etwa 200 Umdrehungen i. d. Min. gearbeitet; seine Geschwindigkeit wurde von Hand durch Einstellen des Gashehnes geregelt. Bei voller Ausnutzung und normaler Verlaufe der Arbeitsspiele kann die Leistung an 1,4 PS gleichen sein.

Otto (1877).

in Ruhe hatte beeinflut werden können. Bei nahezu gleicher Gasverbrauchse als die atmosphärische Maschine zeichnete sich Ottos Viertaktmotor vor dieser und allen übrigen bestehenden Bauarten durch einen ruhigen, weichen Gang, geringeren Raumbedarf und viel größere spezifische Leistungsfähigkeit aus, offenbare Vorteile, welche dem „neuen Otto“ bald eine weltumspannende Verbreitung verschaffen.

Den Aufbau der ersten Otto-Motoren gibt das Schaubild Fig. 30 wieder; aus dieser äußerlich noch unkonstruktiven Urform entwickelte sich bald das dann vorbildlich gewordene Grundmodell Fig. 31 bis 33. Der Zylinder a ist über die innere Kolbenstellung hinaus um etwa 9/5 des Hubvolumens verlängert, wodurch zwischen Kolben und Zylinderboden ein Verdichtungsraum a’ entsteht. Den Gas- und Lufteinlaß, sowie die Zündung besorgt der unten noch für sich betrachtete Flachschieber b; den Auslaß der Verbrennungsgase das Ventil c; letzterer wird durch die kleine Stirnkurbel d, letzteres durch die unrunde Scheibe e von der Steuerwelle f aus betätigt, die wegen des Viertaktes nur halb so viel Umdrehungen als die Kurbelwelle macht. Das auf dem Zylindermantel befestigte Gasventil g steuert ein zweiter Nocken g und ist durch einen Rohrkrümmer h mit dem Gaskanal des Schieberdeckels verbunden. Vor diesem brent in einem Kamin ständig eine Zündflamme, deren Gasleitung außer- dem noch eine Vermittlungsfüllung in Schieber b speist.

Die Geschwindigkeitserregelung erfolgt durch „Aussetzer“, indem bei zu schnellem Gang der Fliehkrafregler den losen Nocken g' auf der Steuerwelle fso weit seitwärts zieht, daß der Hebel l unbetätigt, das Gasventil g also geschlossen bleibt. Der Kolben saugt dann nur
Verpfuschungsmaschinen.

Fig. 31—33.

Otto-Motor aus dem Jahre 1884.

Bei 170 Umdrehungen pro Min. kann der Motor eine Leistung von 900 ft-lb erreichen.

(Lenzscher Verhältnis 800 bis 900 kg für 1 Ps.)

Leistung bei niedriger Kaltbedingung 6 bis 8 kg/cm².)
Luft an, die er beim vierten Hube wieder ausstößt. Später wurde der Nocken für „Präzisions-
regelung“ an der Ablaufseite keilförmig abgeschrafft und so viel verbreitert, daß sich in allen
Nockenstellungen das Gasventil \(g \) öffnet, jedoch die Dauer der Eröffnung der Leistung
entsprechend verändert.

Näheren Aufschluß über die Konstruktion der Schiebersteuerung und ihre Wirkungs-
weise geben Fig. 34 bis 38; es ist

- Fig. 34 Ansicht des Schieberspiegels am Zylinderkopf;
- Fig. 35 innere Ansicht des nach rechts geklappten Schieberdeckels;
- Fig. 36 innere Ansicht des nach unten geklappten Schiebers;
- Fig. 37 Querschnitt durch die Zündkanäle des Schiebers und Deckels;
- Fig. 38 äußere Ansicht des nach unten geklappten Schiebers.

Bei Beginn des Saughubes liegt der Kanal \(a \) (Fig. 36) bereits auf dem geöffneten Kanal
\(a' \) (Fig. 34); Kanal \(b \) fängt eben an, den Einlaßkanal \(b' \) zu öffnen. Die Löcher \(c \) (Fig. 38)
liegen vor dem Gaskanal \(c' \) (Fig. 35), doch beginnt das Gasansaugen erst später,
nachdem das Ventil \(g \) (Figur 33) geöffnet ist. Während des Saughubes geht der
Schieber durch seine linke Grenzlage und schließt rück-
kehrend die Kanalgruppe \(b \) und \(b' \), die nun bis zur Zün-
dung geschlossen bleibt. In-
zwischen fällt sich der Ka-
nal \(d \) (Fig. 36 bis 38) mit Gas
aus der Zündflammenleitung
durch die Kanäle \(e \) im Schie-
ber bzw. \(e' \) im Deckel. Diese
Gasfüllung entzündet sich,

Der Schieber nun weiter nach rechts, so deckt er die Öffnungen \(d' \) ab und
bringt die Vermittlungsflamme in \(d' \) vor dem Einläßkanal \(b' \) (Fig. 34). Bei plötzlicher Er-
öffnung des letzteren würde der Überdruck im Zylinder die Flamme in \(d' \) ausblasen; um dies
to verhüten findet kurz vor Aufdeckung des Kanals \(b' \) ein Spannungsangelschluß zwischen
diesem und dem Zündkanal \(d' \) durch die engen Kanäle \(f' \) und \(f' \) statt. In der rechten Grenz-
stellung des Schiebers tritt die Übertragungslamme vor den Kanal \(b' \) und entzündet die
Ladung. Während des Ausdehnungs- und Ausschubbubes ist der Schieber geschlossen,
bis die Kanalgruppen \(a \) bzw. \(b \) für das Ansauen wieder mit \(a' \) bzw. \(b' \) in Verbindung treten.

Die Beschaffenheit und Wirkung der Ladung im Verbrennungsräume ist lange Zeit
eine vielerlehrte Streitfrage gewesen, deren Lösung durch die Prüfungen um das Patent 532
eine ungewöhnliche Bedeutung erlangte. Orto selbst hatte die auch in seinen Stammpatenten
festgelegte Auffassung einer „schichtenweisen Lagerung“ des Gemisches\(^1\), die von Säby
und anderen Wärmetheoretikern geteilt und wissenschaftlich verfochten wurde. Man
folgte etwa so: Am Ende des Saugverfahrens befinden sich im Zylinder drei verschiedene Gas-
 schichten; zunächst dem Kolben nur Verbrennungsrückstände, danach die voreingeharte
Luft und vor dem Zylinderboden nur reines Gemisch. Diese Schichtung geht während der
Verdichtung zwar teilweise verloren, die ursprünglichen Grenzen verlaufen ineinander,
doch bleibt die Reihenfolge vom unbrennbaren zum zündfähigen Gemisch erhalten. Wird
das letztere im Totpunkt entflammt, so erstreckt sich die Verbrennung nicht sofort auf die

\(^1\) Der später vernichtete Anspruch 1 des Patentes Nr. 532 lautet: „In einem geschlossenen Raume
brennbare, mit Luft gemischte Gase vor ihrer Verbrennung mit anderer Luftart in solcher Weise zusammen-
zubringen, daß die an einer Stelle eingeleitete Verbrennung von Gas- zu Gaskörperchen verlangsamen
sich fortsetzt, die Verbrennungsprodukte sowohl als die sie umhüllende Luftart durch die erzeugte
Wärme sich ausdehnen und so durch Expansion Betriebskraft abgeben.“ Vgl. hierzu Seite 476 und 492
ganze Ladung, sondern sie beginnt mit dem reichsten Gemisch vor dem Einläßkanal und pflanzt sich, nur allmählich von Schicht zu Schicht fortschreitend, auf den übrigen Zylinderinhalt fort. Die Verbrennung ist also keine plötzliche, vielmehr vorsätzlich „verlangsamt“, zu dem Zwecke, die heftigen Explosionssöße zu verhüten. — Um eine solche schichtweise Fortpflanzung der Verbrennung zu sichern, benutzte Otto anfangs einen langgestreckten, gegen den Kolben hin trichterförmig weiter werdenden Verdichtungsraum, den er später zugunsten des langen Einläßkanals (Schußkanal genannt) aufgab.\footnote{Vgl. D. R. P. Nr. 2735, Anspruch 1.}

Fig. 40 und 41. Otros Zwermotor.

Dem „neuen Otto“ folgten in den nächsten Jahren zunächst einige stehende Ausführungsformen mit oben gelagerter Kurbelwelle, die besonders für das Hausgewerbe berechnet waren und deshalb auf größte Einfachheit und Billigkeit und auf geringsten Raumbedarf mehr Gewicht legten, wie auf höchste Wirtschaftlichkeit. Der sogenannte Zwermotor (Fig. 40 und 41) für $\frac{1}{4}$ bis $\frac{1}{2}$ PS Leistung war von vornherein ohne Schieber durch-

Fig. 42. Otto's Verbund-Viertaktmotor von 60 Psl. Erbaut 1879.

In gleicher Weise wurde auch dieser Entwicklung erweitert sich auch der Leistungsgrenze. Von 4 PS im Jahre 1878 wuchsen die Maschinengrößen des Deuter Stammhauses 1888 auf 15 bis 20 PS, 1885 auf 80 PS, 1889 auf 100 PS und 1893 auf 200 PS. Neben der vermehrten Leistung drängten auch die höheren Anforderungen an den Gleichgang der Motoren frühzeitig zu zweizylindrischen Anordnungen. Um 1885 begann die Anpassung des Otto-Motors an den Hochfengasbetrieb, was eine noch schnellere Zunahme der Maschinen-Leistungen verursachte, und zwar bis 1898 bereits auf 600 PS und seitdem bis etwa 2000 PS. Das Bestreben nach größeren Leistungen und höherer Gleichförmigkeit war es auch, das um diese Zeit den von Anfang an versuchten doppeltwirkenden Arbeitsgang wieder zur Aufnahme und von da an zur dauernden Ausübung brachte.

Das ständige Wachsen der Maschinengrößen rief schon frühzeitig ein starkes Bedürfnis nach einem billigen, einfach herzustellenden Kraftgas hervor, welches dann auf die motorische Verwendung des sog. Mischgases leitete. Der erste Kraftgasmotor wurde 1884 von der englischen Lizenzinhaberin der Otto-Patente (CROSSLEY BROTHERS in Manchester) in Verbindung mit einem besonderen, von Dawson konstruierten Schachtgenerator in Betrieb gesetzt1); das Deuter Stammhaus folgte 2 Jahre später mit einem 50 PS Kraftgasmotor eigener Bauart und nahm danach auch die Herstellung geeigneter Mischgas erzeuger selbst auf.

Unter den vielen, durch das schrittweise Ausbreiten des Verwendungsgebietes und Steigen der Ansprüche gezeitigten Versuchs- und Übergangsbauarten ist noch der dreizylindrische Verbundgasmotor von Otto, Fig. 42, der Erinnerung wert; er ging 1879

1) Dadurch erklärt sich die Bezeichnung „Dawsongas“ für Mischgas überhaupt, die Jahrzehnte hindurch unverwechselbar war, auch heute noch anzutreffen ist.

Betriebsergebnisse. Nachstehend sind die Zahlenergebnisse einiger Leistungsprüfungen an Deutzer Otto-Motoren der ersten Zeit zusammengestellt, um deren anfängliche Wirtschaftlichkeit und spezifische Leistungsfähigkeit zu zeigen. Beide erhöhten sich selbstverständlich durch die baulichen Verbesserungen der späteren Jahrzehnte bis zu ihrer gegenwärtigen Höhe (s. V. Teil).

Versuche von Slaby und Brauer, an liegenden Otto-Motoren der Urform (Kreuzkopf) ausgeführt, und zwar Reihe 1 bis 3 im Jahre 1878 von Prof. Slaby und Brauer gemeinsam¹, Reihe 4 im Jahre 1881 von Slaby allein²).

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zylinderbohrung</td>
<td>mm</td>
<td>140</td>
<td>170</td>
<td>171.9</td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>mm</td>
<td>180</td>
<td>345</td>
<td>340</td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td></td>
<td>184</td>
<td>180</td>
<td>159.4</td>
</tr>
<tr>
<td>Verpuffungen i. d. M.</td>
<td>44</td>
<td>77</td>
<td>78.95</td>
<td></td>
</tr>
<tr>
<td>Drehleistung</td>
<td>PSe</td>
<td>1.08</td>
<td>2.20</td>
<td>3.98</td>
</tr>
<tr>
<td>Mittlerer indiz. Kolbendr.</td>
<td>kg/qcm</td>
<td>4.88</td>
<td>4.33</td>
<td>4.49</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>PSI</td>
<td>2.06</td>
<td>3.20</td>
<td>5.73</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>%</td>
<td>52</td>
<td>63</td>
<td>69.5</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>cbm</td>
<td>1,39</td>
<td>1,13</td>
<td>1,07</td>
</tr>
<tr>
<td>p_0 in kg/qcm</td>
<td></td>
<td>2.43</td>
<td>2.89</td>
<td>3.23</td>
</tr>
<tr>
<td>η_0 in %</td>
<td></td>
<td>9.1</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>

In Versuchsreihe 4 gilt der Gasverbrauch abzüglich Zündflamme; der Heizwert ist in dieser Reihe 4875WE/cbm, für die übrigen zu 5000WE/cbm angenommen. Das den Versuchsreihen 1 bis 3 entnommene Diagramm Fig. 43 zeigt augenfällig die „verlangsamte Verbrennung“. Für die Versuchsreihe 4 wurde noch festgestellt:

- Gasgehalt der Ladung (berechnet) 12.2 %
- Verdichtungsdruck 2,43 at
- Verpuffungsdruck 9.6 at
- Kühlwasserverbrauch für 1 PSe/st. 48 ltr
- Wärmeabfuhr durch das Kühlwasser für 1 PSe/st. 2260 WE
- Verpuftungstemperatur 1125° abs.
- Auspuftemperature 802° abs.

Von 100 WE wurden nach Berechnung 16.5 WE in Arbeit verwandelt, 32.3 WE durch die Abgase und 51.2 WE durch das Kühlwasser abgeführt.

Tafel 6.

<table>
<thead>
<tr>
<th>Nennleistung</th>
<th>2 PSe, liegend</th>
<th>3 PSe, liegend</th>
<th>3. PSe, stehend</th>
<th>4 PSe, liegend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nor-</td>
<td>halb</td>
<td>leer</td>
<td>nor-</td>
</tr>
<tr>
<td>Belastung</td>
<td>mal</td>
<td></td>
<td></td>
<td>mal</td>
</tr>
<tr>
<td>Zylinderbohrung</td>
<td>mm</td>
<td>140</td>
<td>155</td>
<td>170</td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>mm</td>
<td>280</td>
<td>310</td>
<td>260</td>
</tr>
<tr>
<td>Verdichtungsraum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolbenhubvolumen</td>
<td></td>
<td>0,68</td>
<td>0,58</td>
<td>0,568</td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td>1 PSe</td>
<td>181,4</td>
<td>178,6</td>
<td>184,6</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>2,22</td>
<td>2,58</td>
<td>0,86</td>
<td>0</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe</td>
<td>1 PSe/st</td>
<td>980</td>
<td>920</td>
<td>1480</td>
</tr>
<tr>
<td>Wärmeverbrauch für 1 PSe</td>
<td>1 PSe/st</td>
<td>4900</td>
<td>4600</td>
<td>7400</td>
</tr>
<tr>
<td>Kühlwasser</td>
<td>für 1 PSe</td>
<td>32,8</td>
<td>38,6</td>
<td></td>
</tr>
<tr>
<td>Kühlwasser für 1 PSe</td>
<td>1 PSe/st</td>
<td>1968</td>
<td>2316</td>
<td>2532</td>
</tr>
<tr>
<td>oder % der Gesamtwärme</td>
<td>40</td>
<td>52</td>
<td>54</td>
<td>49,5</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
p_e & = \text{kg/qcm} \\
\eta_w & = \text{\%}
\end{align*}
\]

\[
\begin{align*}
p_e & = 2,97 \text{ kg/qcm}, \eta_w = 11,5\% \text{ (bezogen auf Anthrazit von } H_\text{a} \approx 7000 \text{ WE/kg).}
\end{align*}
\]

Böcking schätzt a. a. O. den Heizwert des Kraftgases auf 1600 WE/cbm, was aber als Durchschnitt zu hoch ist.

c) **Versuche von Brauer** an neun Deutzer Gasmotoren verschiedener Größe und Bauart, im April 1886 ausgeführt, lieferten die oben in Tafel 6 zusammengestellten Hauptwerte. Der Gasverbrauch, versteht sich einschließlich Zündflamme (je etwa 80 ltr stündlich) und für den Normalzustand von 760 QS bei 12°C.

Der Kühlwasserthermaus für ist auf 60° Temperaturerhöhung umgerechnet; bezogen auf 1 cbm verbrennten Leuchttgases beträgt er 40 bis 35 ltr. Jeder Motor wurde mit den angegebenen vier Belastungen geprüft; nämlich mit 10% Aussetzern als normale Nennleistung, ohne Aussetzer als Höchstleistung, mit 50% Aussetzern als halbe Leistung und schließlich im Leerlauf, wobei die Bandbremse abgebremst war. In dem Versuchsbericht ist schätzungsweise ein Heizwert des Leuchttgases von 6000 WE/cbm angenommen, was nur bei einem ganz ungewöhnlichen Gase entstehen würde. Ich habe deshalb in Tafel 6 den Wärmeverbrauch wie bisher auf 5000 WE/cbm Heizwert umgerechnet. Jede erste Versuchsserie (Normalleistung) dauerte 1 Stunde, die Nebenversuche nur 10 bis 20 Minuten.

Nach Otto.

Kaum war der Viertakt patentrechtlich freigegeben (s. Seite 648), so entstanden rasch nacheinander zahlreiche neue Viertaktgasmotoren, von denen allerdings die meisten ebensowenig wieder verschwanden. Während Otto in den ersten Jahren nur die liegenden

1) Z. Ver. deutsch. Ing. 1887, Seite 1007.
2) Z. Ver. deutsch. Ing. 1887, Seite 206.
Schiebemotor pflegte, begannen seine Wettbewerber fast ohne Ausnahme mit der Bockform (ähnlich Fig. 40, Seite 653) des stehenden Ventilmotors, hauptsächlich um ihr neues Erzeugnis einfacher und billiger und dadurch leichter verkäuflich zu halten. Der Standmotor mit unten gelagerter Kurbelwelle erschien erst später, um 1888, auf dem Markt; erstmalig nach Konstruktionen von LOUTZKY, der die als „Hammertypus“ bekannte Bauart mit unten liegender Kurbelwelle für stehende Viertaktmotoren einführte. (Ein 1888 auf der Münchener Kraftmaschinen-Ausstellung in Betrieb zu sehender 3pfdriger Motor dieser Art war bereits mit Ventilsteuerung und offener Glührohrzündung ausgerüstet.)

Charon

**Betriebsergebnisse.** a) Prof. A. Würz fand 1889 an einem 4 pfdigen Motor von 180 mm Bohrung und 360 mm Hub bei rund 166 Umdr/min. unter der Höchstleistung von 4,2 PSe einen Gasverbrauch von 510 ltr, der sich bei 3,49 PSe Belastung aber bereits auf 563 ltr erhöhte. Der obere Heizwert des Leuchtgases betrug 5690 WE/cbm.

Über die Prüfung eines größeren Charon-Motors veröffentlicht Würz noch folgende Werte:\[^1\] (umgerechnet):

<table>
<thead>
<tr>
<th>Bremsleistung</th>
<th>26,10</th>
<th>23,22</th>
<th>17,74</th>
<th>17,43</th>
<th>16,53</th>
<th>12,22</th>
<th>PSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>464</td>
<td>482</td>
<td>555</td>
<td>560</td>
<td>560</td>
<td>748</td>
<td>ltr</td>
</tr>
</tbody>
</table>

b) Bei einem 50 pfdigen Zwillingsmotor von 350 mm Bohrung bei 600 mm Hub ergeben sich im Jahre 1894 die nachstehenden Betriebszahlen:\[^2\]:

\[^1\] Würz, Traité théorique et pratique des moteurs à gaz, II. Teil, Seite 361.
\[^2\] Bulletin technologique 1894.
Tafel 7.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. l. d. Min.</td>
<td>154,5</td>
<td>153,5</td>
<td>153</td>
<td>152</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td>Bremsspannung</td>
<td>16,31</td>
<td>24,31</td>
<td>29,62</td>
<td>37,45</td>
<td>45,17</td>
<td>53,15</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>31,2</td>
<td>35,5</td>
<td>43,2</td>
<td>47,4</td>
<td>59,8</td>
<td>58,3</td>
</tr>
<tr>
<td>Mittl. induz. Kolbenendruck</td>
<td>1,575</td>
<td>1,954</td>
<td>2,2</td>
<td>2,43</td>
<td>2,72</td>
<td>3,01</td>
</tr>
<tr>
<td>Mittlerer Reibungsdruck</td>
<td>0,75</td>
<td>0,72</td>
<td>0,69</td>
<td>0,50</td>
<td>0,40</td>
<td>0,27</td>
</tr>
<tr>
<td>Gasverbrauch für 1 l/min</td>
<td>1072</td>
<td>748</td>
<td>638</td>
<td>552</td>
<td>509</td>
<td>480</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>52,6</td>
<td>63,1</td>
<td>68,7</td>
<td>79,0</td>
<td>85,5</td>
<td>91,2</td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
<td>11,8</td>
<td>16,9</td>
<td>19,9</td>
<td>22,8</td>
<td>25,0</td>
<td>26,4</td>
</tr>
</tbody>
</table>

Der mittlere Kol bendruck der Reibungsarbeit \(p_r = p_c - p_a \) nimmt hier auffällig im umgekehrten Verhältnis zur Maschinenleistung ab, was im Widerspruch mit den gewöhnlichen Beobachtungen steht (vgl. die entsprechenden Prüfungsberichte im V. Teil).

Delamare-Deboutteville & Malandin

Beider ersten 100 pferdigen Pariser Maschine Fig. 44 bis 47 wurde der Einlaß und die Zündung noch durch einen Flachschieber \(a \) gesteuert; dieser entnahm seine Bewegung mittels der Kulisse \(a' \) dem äußeren Steuerwellenende. Das Schiebergestänge betätigte gleichzeitig auch das Gasventil \(c \), dessen wagerechter Kegel durch eine zweiarmige Klinke mitgenommen wurde. Das Auslaßventil \(c \) hing in einem großen, topfartigen Gehäuse unter dem Verdichtungsraume. Den Kegel dieses Ventils öffnete eine Daumenscheibe mit Hilfe des Gestänges \(c' \), an dem der untere Wälzhubel \(c' \) besonders zu erwähnen ist; dieser „Krokodihielbille“ (vgl. Fig. 46) bezweckt, die Steuerung von dem Eröffnungsdruck des Auslaßkegels zu entlasten. Zwischen der Kulissenstange \(a' \) und dem Gaskegel \(b \) hing der Pendelregler \(d \), der bei Überschreitung der normalen Umlaufzahl \(n = 100 \text{ d. Min.} \) die wagerechte Mitnehmerklinke in einer solchen Stellung abführte, daß dieselbe den Kegel schaft nicht berührte und so das Laden zeitweilig aussetzte (Einzelfigur im II. Teil, Seite 310).

Der Motor hatte eine 240 mm starke Kurbelwelle und zwei Schwungradräder von 3,6 m Durchmesser und je 3900 kg Gewicht; er war bereits mit einer selbsttätigen Gemisch-Anlaufeinrichtung ausgerüstet und arbeitete sowohl mit Leuchtgas wie mit Kraftgas.

Der Motor war in Paris mit einem Hochofengebläse von 1700 mm Bohrung und 1400 mm Hub in Reihenanordnung gekuppelt. Seine hauptsächlichen Bauverhältnisse sind:
Betriebsergebnisse. a) Versuche von A. Witz, ausgeführt 1885 an einem abwechselnd mit Leuchttgas und Kraftgas betriebenen Simplex-Motor von 200 mm Bohrung bei 400 mm Hub mit Schiebersteuerung und Pendelregler (Aussetzer). Erbauer des Motors und des Dawson-Generators war Thomas Powell in Rouen.

Fig. 44—47.
Erster 100 PS Simplex-Motor. (100 Umdr/min.)
Erbaut 1886 von Thomas Powell in Rouen.

Tafel 8.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchttgas</td>
<td>Nr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>152,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1650</td>
<td>77</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>154,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>602</td>
<td>21,5</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>161,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>562</td>
<td>19,9</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>157,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>579</td>
<td>19,6</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Kraftgas</td>
<td></td>
</tr>
<tr>
<td>H₂ 5400</td>
<td>3</td>
<td>161,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2459</td>
<td>26,1</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>WE/cbm</td>
<td>4</td>
<td>157,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3208</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>H₂ 5300</td>
<td></td>
</tr>
<tr>
<td>WE/cbm</td>
<td>5</td>
<td>163,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2734</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

42°
Die Verdichtung betrug bei Leuchtgas 4,36 at, bei Kraftgas 6,8 at, die Verpuffung im ersten Falle 14 bis 22 at, im letzten Falle 22 at. Von der entwickelten Wärme wurden rund 20% in Nutzarbeit verwandelt und 40% durch das Kühlwasser abgeführt; hierin, wie in den obigen Angaben, ist der Verbrauch der Zündflammen nicht enthalten. Der mechanische Wirkungsgrad ist besonders in Versuchsreihe 3 un wahrscheinlich hoch. Der Schmierölverbrauch betrug 160 g für die PSe/st., also sehr viel. Alles in allem sind diese Prüfungsergebnisse für einen Schiebermotor der ersten Jahre aber äußerst günstig.

b) Versuche von A. Witz, ausgeführt 1890 an dem in Paris ausgestellten 100 pferdigen Kraftgasmotor Fig. 44—47 von 575 mm Bohrung bei 950 mm Hub; Erbauer des Motors Thomas Powell in Rouen, des Generators Buire et Lencachez in Paris. Der Gaserzeuger hatte einen inneren Durchmesser von 0,760 m und eine Höhe von 1,900 m, der Wäscher eine solche von 2,750 m.

Es wurde englischer Anthrazit mit 5,4% Asche im Generator und Gaskoks mit 6% Asche im Dampferzeuger verfeuert; das Mischgas hatte einen oberen Heizwert von 1487 WE/cbm bei 0° und 760 QS. Der Versuch umfaßte 23 1/2 Stunden und ergab:

<table>
<thead>
<tr>
<th>Verbrauch</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. i. d. Min.</td>
<td>100,8</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>75,86 PSe</td>
</tr>
<tr>
<td>Anthrazitverbrauch für 1 PSe/st.</td>
<td>516 g</td>
</tr>
<tr>
<td>Koksverbrauch für 1 PSe/st.</td>
<td>96 g</td>
</tr>
<tr>
<td>Zusammen für 1 PSe/st.</td>
<td>612 g</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>2370 ltr</td>
</tr>
<tr>
<td>Dampfverbrauch für 1 PSe/st.</td>
<td>0,487 kg</td>
</tr>
<tr>
<td>Gastemperatur vor dem Wäscher</td>
<td>440°</td>
</tr>
<tr>
<td>Gastemperatur vor dem Motor</td>
<td>21,5°</td>
</tr>
</tbody>
</table>

Wasserverbrauch für 1 PSe/st.
- im Kessel | 0,487 kg |
- im Kühlmantel | 50,0 kg |
- im Wäscher | 10,2 g |
- insgesamt für 1 PSe/st. | 60,687 kg |

Verbrauch an Zylinderöl für 1 PSe/st. | 3,74 g |
Verbrauch an Lagerfett für 1 PSe/st. | 0,45 g |

Ein Nebenversuch zur Ermittlung des mechanischen Wirkungsgrades ergab im Durchschnitt

\[n = 100,77, \quad \rho = 4,052 \text{ kg/qcm}, \quad N' = 111,90 \text{ Psii}, \quad N_e = 76,80 \text{ PSe}, \]

und daraus \[\eta_m = 0,69, \]

also erheblich niedriger als bei dem kleinen Motor. Das bei dieser Gelegenheit indizierte Diagramm Fig. 50 zeigt eine Verdichtung von 6 at und eine Verpuffung von etwas über 12 at. Der Höchstdruck tritt erst nach 12 bis 15% Kolbenvorlauf auf, was angeblich durch verspätete Betätigung der Zündsteuerung absichtlich herbeigeführt worden ist. Eine vernünftige Begründung dieses Nachzündens dürfte schwer zu geben sein.
c) Versuche von HUBERT und BAILLY ausgeführt 1895 bis 1896 an dem ersten Hochofengas-Simplex-Motor von 194 mm Bohrung bei 350 mm Hub. Erbauerin des Motors die Gesellschaft COCKERILL in Seraing.

Bei 9,5 at Verdichtung und 180 bis 200 Umdr. i. d. Min. leistete der Motor 4,8 bis 5 PSe und verbrauchte dabei 5,30 cbm Gichtgas für 1 PSe/st. Der mittlere indizierte Kolbendruck schwankte zwischen 1,75 und 2,85 kg/qcm, die Verpuffungsspannung zwischen 5,3 und 13,7 at. Der mechanische Wirkungsgrad betrug bei Höchstleistung etwa 77%. Zur Kühlung und Reinigung des Gichtgases waren 1400 ltr Wasser für jede PSe/st. erforderlich.

<table>
<thead>
<tr>
<th>Umdr. i. d. Min.</th>
<th>105,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verpuffungen i. d. Min.</td>
<td>47</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>181,16 PSe</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>~215 PSe</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>85%</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>3,33 cbm</td>
</tr>
<tr>
<td>Oberer Heizwert des Gases</td>
<td>981 WE/cbm</td>
</tr>
<tr>
<td>Wasser verbrauch in den Wäschern für 1 cbm Gas</td>
<td>9 ltr, für 1 PSe/st. 30 ltr</td>
</tr>
</tbody>
</table>

Kühlwasserverbrauch für 1 PSe/st. 72 ltr bei 33,7 — 22,7 = 11° Temperaturzunahme.

Gesamt-Wasserverbrauch für 1 PSe/st. 72 ltr

Verbrauch an Zylinderöl für 1 PSe/st. 15 g

Verbrauch an Lagerfett für 1 PSe/st. 2,3 g

Die Verdichtung betrug 7,5 at, der mittlere indizierte Kolbendruck 3,7 kg/qcm. Gasverbrauch und Heizwert beziehen sich auf 8° C und 760 Qs.

e) Versuche von HUBERT, ausgeführt anfangs 1900 an einem 600 pferdigen Hochofengas-Simplex-Motor nach Fig. 48 und 49 von 1300 mm Bohrung bei 1400 mm Hub, erbaut von der Gesellschaft COCKERILL in Seraing.

I. Versuch, Motor ohne Gebläse (Dauer 6 Stunden).

<table>
<thead>
<tr>
<th>Umdr. i. d. Min.</th>
<th>94,37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verpuffungen i. d. Min.</td>
<td>41,90</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>786,16 PSe</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>575,0 PSe</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>73,14%</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>3,495 cbm</td>
</tr>
<tr>
<td>Heizwert des Gases</td>
<td>984 WE/cbm</td>
</tr>
<tr>
<td>Gastemperatur vor dem Zylinder</td>
<td>9°</td>
</tr>
</tbody>
</table>

II. und III. Versuch, Motor mit angekuppeltem Gebläse (Dauer je 2 Stunden).

<table>
<thead>
<tr>
<th>Umdr. i. d. Min.</th>
<th>83,92</th>
<th>93,02 i. d. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indizierte Motorleistung</td>
<td>746,73</td>
<td>886,54 PSe</td>
</tr>
<tr>
<td>Indizierte Gebläseleistung</td>
<td>562,57</td>
<td>725,30 PSe</td>
</tr>
<tr>
<td>Mechanischer Gesamtwirkungsgrad</td>
<td>75,33</td>
<td>81,81%</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>3,113</td>
<td>2,853 cbm</td>
</tr>
<tr>
<td>Heizwert des Gases, durchschnittlich</td>
<td>991</td>
<td>1004 WE/cbm</td>
</tr>
<tr>
<td>Gastemperatur vor dem Zylinder</td>
<td>8,2</td>
<td>9°</td>
</tr>
<tr>
<td>Temperatur der Abgase</td>
<td>508,5°</td>
<td></td>
</tr>
<tr>
<td>Kühlwasserverbrauch für 1 PSe/st. im Zylindermantel</td>
<td>56,8 ltr</td>
<td></td>
</tr>
<tr>
<td>Kühlwasserverbrauch für 1 PSe/st. im Kolbenmantel</td>
<td>12,7 ltr</td>
<td></td>
</tr>
<tr>
<td>Gesamt-Kühlwasserverbrauch für 1 PSe/st. bei 33,17 — 7,86 = 25,31° Temperaturzunahme</td>
<td>69,5 ltr</td>
<td></td>
</tr>
</tbody>
</table>

Die durchschnittliche Wärmeverteilung war: 28% in Arbeit umgewandelt, 52% durch das Kühlwasser und 20% durch Abgase und Strahlung verloren. Ein Leerlaufversuch
ergab bei der um rund 30% verminderten Umlaufzahl \(n = 67,5 \) und 6,86 Verpuffungen in der Minute, einen Arbeitsaufwand von 147,36 PSI und einen Gasverbrauch von rd. 740 cbm stündlich oder rd. 5 cbm für 1 PSj/st.

Die Verdichtungsspannung betrug 9,5 at, der mittlere indizierte Kolbendruck 4,75 kg/qcm, die Verpuffungsspannung 17,5 bis 20 at. Der oben angegebene Heizwert bezieht sich auf 8° und 760 QS und wurde von WTRZ in der kalorimetrischen Bombe ermittelt; JUNKERS Kalorimeter ergab nur \(H = 876 \) bzw. 915 und 888 WE/cbm, also um rund 10% weniger.

Crossley Brothers

in Manchester besaßen anfangs die Ausführungsrechte der Otto-Patente für England, haben sich aber schon nach einigen Jahren unabhängig gemacht. Unter den vielen sprunghaft entstandenen Bauarten ist die um 1892 von ATKINSON entworfene „Scavenging engine“ von nachhaltiger Bedeutung; in ihr wird die Trägheit der ausströmenden Abgassäule dazu benutzt, gegen Ende des Auschubhubes einen Luftstrom durch den Verdichtungsraum zu saugen, um damit die Abgasreste auszuwaschen. Daß unter günstigen Verhältnissen die Anspuffgase infolge ihrer lebendigen Kraft einen merklichen Unterdruck im Zylinder hervorrufen, ist bekannt und kann gelegentlich an jedem Verbrennungsmotor beobachtet werden. ATKINSON versucht dieser Erscheinung ihre Zufälligkeit zu nehmen und sie zu ge- nannten Zwecke regelmäßig künstlich herbeizuführen, indem er die Auslassleitung recht lang (nach CLERKs Angaben mindestens 65 Fuß) und frei von Richtungs- und Querschnittswechseln hält, den Verdichtungsraum zweckentsprechend formt, das Einlassventil mit Voröffnung betätigt usw. Schon noch etwa 0,85 Aus- schubhub öffnet sich das Einlassventil a, Fig. 51 und 52, durch welches nun die im Auspuffrohr durch die Trägheit ihrer Massen „düngengezogenen“, d. h. überexpandierten Abgase Spülluft nach- saugen, bis nach etwa 10% Kolbenvorlauf das Auslassventil b sich schließt und der eigentliche Saughub beginnt. Die Wölbung der inneren Wandungen und die eigenartige Lage der Ventile bezweckt, den Luftstrom möglichst unbehindert und allseitig durch den Verdichtungsraum zu leiten. Mit schwacher Feder indizierte Diagramme dieser „Scavenging-Motoren“, Fig. 53, zeigen während des Absaugens einen Unterdruck bis zu 0,06 bis 0,08 at. Die Wirkung hängt aber bekanntlich von manchen Zufälligkeiten ab (vgl. Seite 39).

2. Sechstaktmaschinen.

Der Sechstakt verlangt keine besonderen Bauteile; nur wird die Steuerwelle wie 3 : 1 ins langsame übersetzt und die Einlaß- und Auslaßscheiben erhalten je einen zweiten Daumen für die beiden Ausspülakte. In letzter Zeit hat man sich des Sechstaktverfahrens wieder erinnert und sogar nachgewiesen, daß dessen spezifische Leistungsfähigkeit in einer guten Sonderausführung derjenigen des Viertaktes nicht nachsteht. Für den

2) Siehe Z. Ver. deutsch. Ing. 1913, Seite 134.
Gleichdruckmotor hat der Sechstakt vielleicht dann noch Aussichten, wenn man den Arbeitszylinder zum Verdichten der Einblaseluft mit verwenden, also den Zylinderraum gründlich ausspülen und kühlen will.

Von Sechstaktgasmaschinen der ersten Entwicklungsjahre sind bekannt geworden:

Rollason-Beck\(^1\).

Betriebsergebnisse. Versuche von Prof. Kennedy, anfangs 1888, an einem 4 pferdigen Motor von 191 mm Bohrung und 392 mm Hub ausgeführt\(^5\).

| Tafel 9. |
|-----------------|------|------|------|------|------|------|
| Umdr. i. d. Min. | 206,5 | 212 | 163,2 | 188,9 | 183,8 | 221,9 |
| Verpuffungen i. d. Min. | 68,7 | 70,7 | 54,4 | 56,3 | 60,3 | . |
| Mittl. indiz. Kolbenldr.\(^9\) kg/qcm | 4,4 | 3,8 | 4,9 | 4,2 | . | . |
| Indizierte Leistung \(\text{PSI}\) | 7,25 | 6,61 | 6,42 | 5,62 | . | . |
| Bremseleistung \(\text{PSe}\) | 6,31 | 5,71 | 5,95 | 4,84 | 6,50 | . |
| Mechanischer Wirkungsgrad \(\%\) | 87,3 | 87,7 | 90,8 | 86,1 | . | . |
| Gasverbrauch für 1 \(\text{PSe/}\text{st.}\) ltr | 772 | 815 | 785 | 786 | . | . |
| Verpuffungsdruk | 12 | 11,9 | 13,6 | 10 | . | . |
| Mischungsverhältnis der Ladung | 9,8 | 11,2 | 9,13 | 11,8 | . | . |

Die Diagramme zeigten eine fast genau adiabatische Ausdehnung \((PV^{1,376} = \text{konst.})\), woraus gefolgt werden könnte, daß der Zweck des Ausspülen, das Nachbrennen zu verhindern, tatsächlich erreicht wurde. Die Spannungsschwankungen während der Ausspül- und Ladevorgänge kommen in den Schwachfederdiagrammen Fig. 54 und 55 zum Ausdruck; ersteres gibt den 4. und 5. Takt, letzteres den 6. und 1. Takt wieder.

Griffin

Betriebsergebnisse. Tafel 10 enthält die Ergebnisse mehrerer Versuche von Prof. Kennedy an Griffin-Motoren verschiedener Größe\(^4\), und zwar beziehen sich Reihe 1 bis 5 auf

\(^1\) Konstrukteur der Maschine ist Rollason; Beck ihr englischer Erbauer.
\(^2\) Nach verschiedenen englischen Quellen umgerechnet.
\(^3\) Abzeichig 0,3 bis 0,5 at Widerstandsdruck der beiden Ausspultakte.
\(^4\) Nach einem Versuchsbericht für metrische Einheiten umgerechnet; siehe auch Sibley, Journ. of Engineering, Juni-Nummer 1900.
einen liegenden 8pferdigen Motor von 229 mm Bohrung und 356 mm Hub aus dem Jahre 1888, Reihe 6 bis 8 auf einen stehenden Zwilling von 145 × 245 mm und die letzte Reihe auf einen stehenden Einzylindermotor von 145 × 255 mm. Versuchsreihe 3 dauerte ununterbrochen 4 Stunden, ein anderer Versuch an einem gleichen Modell sogar 6 Stunden, ohne daß eine Überhitzung des ungekühlten Kolbens störend hervortrat; die Spülluft scheint also bei der damaligen niedrigen Verdichtung genügend gekühlt zu haben. Der Schmierölverbrauch wird hingegen Ziffern die entsprechenden Takte.

Tafel 10.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. i. d. Min.</td>
<td>229</td>
<td>219</td>
<td>224</td>
<td>210</td>
<td>216</td>
<td>205</td>
<td>208</td>
<td>192</td>
<td>232</td>
</tr>
<tr>
<td>Verpuffungsdruck</td>
<td>9,5</td>
<td>10</td>
<td>9,8</td>
<td>10,5</td>
<td>9,6</td>
<td>10,3</td>
<td>11,20</td>
<td>11,20</td>
<td>9,5</td>
</tr>
<tr>
<td>Mittl. ind. Kolbendruck</td>
<td>3,65</td>
<td>3,75</td>
<td>4,0</td>
<td>4,20</td>
<td>2,5</td>
<td>3,3</td>
<td>3,65</td>
<td>3,95</td>
<td>3,10</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>17,64</td>
<td>17,28</td>
<td>17,46</td>
<td>17,17</td>
<td>4,28</td>
<td>4,68</td>
<td>4,73</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>Bremseleistung</td>
<td>15,13</td>
<td>14,75</td>
<td>14,94</td>
<td>10,31</td>
<td>7,72</td>
<td>.</td>
<td>.</td>
<td>1,85</td>
<td></td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>85,8</td>
<td>85,4</td>
<td>85,6</td>
<td>elektr.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>82,6</td>
<td></td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSi/st.</td>
<td>ltr</td>
<td>708</td>
<td>710</td>
<td>706</td>
<td>1100</td>
<td>.</td>
<td>.</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSI/st.</td>
<td>ltr</td>
<td>570</td>
<td>575</td>
<td>572</td>
<td>750</td>
<td>0,68</td>
<td>715</td>
<td>716</td>
<td>810</td>
</tr>
</tbody>
</table>

Lange, über ein Jahrzehnt, hat es gedauert, bis man das so übereilt abgetane Zweitaktverfahren wieder würdig verarbeitete und auferwollig von neuem begann, den Zweitakt zur praktischen Verwirklichung zu bringen.

Clerk.

Der auch als Fachschriftsteller bekannte englische Motorenbauer DUGALD CLERK begann schon 1878, gleich nach dem Erscheinen des Otto-Motors, das Verpuffungsverfahren im Zweitakt durchzuführen. Von seinen verschiedenen Ausführungsformen sind infolge fortwährender Änderungen nur einzelne zu einer leidlichen Betriebsreife gelangt.

1) Das Absaugen der Verbrennungsgase durch eine Hilfspumpe bzw. durch eine von dieser in einem unempfindlichen Nebenraume erzeugten Luftverdünnung ist vielfach vorgesehen. Da hierbei das Ansaugen des neuen Gemisches durch die Zusammenziehung der Abgase infolge Abkühlung teilweise mitbegrüßt, die Pumpenarbeit also vermindert wird, und außerdem die Verunreinigung des Gemisches durch Verbrennungsgase leichter wie beim Ausspülen verhindert werden kann, so verdient dieses Verfahren auch fernerhin Beachtung. Ein Ausführungsbeispiel behandeln die früheren Auflagen.
Die Konstruktionselemente der Clerk-Motoren sind heute nebensächlich1). Wie bei dem späteren Bénier-Motor, Seite 668, wird der Arbeitszyylinder durch eine seitliche Hilfs-
pumpe geladen. Die Pumpenkurbel setzt außen am Schwungrade und eilt der Hauptkurbel um 90° voraus. Beide Zylinder sind durch einen an der Pumpenseite offenen Rohrkrümmer untereinander verbunden; das Saug- und Druckventil ist so am Boden des Hauptzylinders angebracht, daß das Pumpen-Druckventil unmittelbar in den Verdichtungsraum führt und auch als Überströmvventil dient. Für den Auslaß ist ein breiter Kanalring vorgesehen, den der Arbeitskolben nach 0,8 bis 0,9 Ausdehnungshub freilegt.

In diesem Augenblick steht der Pumpenkolben etwa auf halbem Verdichtungshub, so daß nach erfolgtem Ausspuff das Laden beginnen kann. Das am Ende des trichterförmigen Verdichtungsraumes eintretende frische Gemisch schiebt nun die Abgase vor sich her durch die Kanäle ins Freie, bis diese geschlossen sind.

Bezi großer Geschwindigkeit schließt ein vom Zündschieber mitbewegter und vom Regler ein- oder ausgeklügelter Gitterschieber den Saugkanal der Pumpe, wodurch die Ladung vorübergehend unterbrochen wird. Bei den ersten Clerk'schen Maschinen wurde noch auf das Gasgehalt des Gemisches geregelt.

Betriebsergebnisse. Clerk selbst gibt die in Tafel 11 zusammengestellten Prüfungsergebnisse, die sämtlich noch aus dem Jahre 1883 stammen und von G. H. Garrett, dem Direktor der CROWN IRON WORKS in Glasgow ermittelt wurden. Hiernach steht der Gasverbrauch

Tafel 11.

<table>
<thead>
<tr>
<th>Nennleistung in PSe</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptzylinder, Bohrung</td>
<td>mm</td>
<td>127</td>
<td>152</td>
<td>178</td>
<td>203</td>
</tr>
<tr>
<td>Hauptzylinder, Hub</td>
<td></td>
<td>203</td>
<td>264</td>
<td>305</td>
<td>406</td>
</tr>
<tr>
<td>Pumpenzylinder, Bohrung</td>
<td>mm</td>
<td>152</td>
<td>178</td>
<td>191</td>
<td>254</td>
</tr>
<tr>
<td>Pumpenzauber, Hub</td>
<td></td>
<td>229</td>
<td>279</td>
<td>305</td>
<td>330</td>
</tr>
<tr>
<td>Umdrehungen i. d. Min.</td>
<td>212</td>
<td>190</td>
<td>146</td>
<td>142</td>
<td>132</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>PSe</td>
<td>2,70</td>
<td>5,63</td>
<td>7,23</td>
<td>13,69</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>PSI</td>
<td>3,62</td>
<td>8,68</td>
<td>9,05</td>
<td>15,78</td>
</tr>
<tr>
<td>Mecanischer Wirkungsgrad</td>
<td>%</td>
<td>74,5</td>
<td>65,0</td>
<td>80,0</td>
<td>78,7</td>
</tr>
<tr>
<td>Mittlerer indizierter Kolbenendruck</td>
<td>kg/qcm</td>
<td>3,03</td>
<td>4,46</td>
<td>3,73</td>
<td>4,24</td>
</tr>
<tr>
<td>Verdichtungsspannung</td>
<td>at</td>
<td>3,7</td>
<td>4,9</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>Verpuffungsspannung</td>
<td>at</td>
<td>11,9</td>
<td>17,6</td>
<td>14,7</td>
<td>14,7</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>ltr</td>
<td>1133</td>
<td>1056</td>
<td>861</td>
<td>753</td>
</tr>
<tr>
<td>Gasverbrauch ständig im Leerlauf</td>
<td>ltr</td>
<td>1133</td>
<td>1642</td>
<td>1614</td>
<td>1982</td>
</tr>
</tbody>
</table>

demjenigen gleichaltriger Viertaktmotoren nicht nach. Der ungewöhnlich große Kraft-über- schuß von 70 bzw. 90% bei den beiden letzten Modellen ist auffallend. Die Diagramme Fig. 57 und 58 gehören diesen Versuchsreihen an. Der mittlere Pumpenwiderstand schwankte zwischen 0,03 und 0,14 kg/qcm, der größere Wert bei dem 12pferdigen Modell.

Wittig und Hees.

Bei dieser, um 1880 von der Hannoverschen Maschinenbau-Gesellschaft in Linden ausgeführten, ältesten deutschen Zweitakt-Verpuffungsmaschine ist die Kurbel der Ladepumpe a mit derjenigen des Hauptzylinders b gleichgerichtet. Bewegen sich die Kolben aufwärts, so wird im Zylinder a durch das Saugventil c und Gasventil d Gemisch angesaugt, während sich im Hauptzylinder b die Verbrennung und Ausdehnung vollziehen. Im oberen Totpunkt öffnet sich das Auslaßventil e des Zylinders b, durch das nun während 0,6 bis 0,7 Niedergang die Abgase ausströmen. Dann schließt sich das Ventil e; gleich danach öffnet der Schieber f den Einlaßkanal. Das vor verdichtete Gemisch strömt hierauf aus der Pumpe a durch das mittels des Rohres h an den Schieberkasten angeschlossene selbsttätige Rückschlagventil g in den Arbeitszylinder b, worauf beide Kolben bis zur unteren Hubgrenze die Verdichtung vollenden. Im Totpunkt fällt das Rückschlagventil g zu und Schieber f entzündet nun die im Hauptzylinder b verdichtete Ladung. Während der Arbeitskolben durch die Verbrennungsgase aufwärts getrieben wird, saugt der Pumpenkolben eine neue Ladung an. Das Hubvolumen des letzteren beträgt nur rund 2/3 von demjenigen des ersteren, so daß die Ausdehnung der Gase vollständiger wie gewöhnlich ist. Schieber und Ventile haben Exzenterantrieb. Der Ketten des Gasventils d endet oben in einer beweglichen Zunge f, die bei zu großer Geschwindigkeit aus dem Bereich des Druckhebels k gelenkt wird, wonach die Pumpe a nur Luft ansaugt.

Die Maschine blieb wirtschaftlich hinter dem Otto-Motor zurück. Ihr Betrieb war infolge des verfehlten Ladeverfahrens häufigen Störungen unterworfen. Da der Schluß des Überströmventils und die Entflammung des Gemisches zeitlich zusammenfielen, so verursachte die geringste Verzögerung in dem Aufsitzen des Ventils ein heftiges Rückzünden in die Ladepumpe, was gewöhnlich ein Versagen des Motors zur Folge hatte. Undichtigkeiten des Überströmventils störten den Betrieb in gleicher Weise.

Betriebsergebnisse. Versuche von Schöttler und Brauer, ausgeführt um 18811).

Nennleistung	2 PSe	4 PSe
Gebremste Leistung	1,78 PSe	3,75 PSe
Umdr. i. d. Min.	105,5	103,0
Gasverbrauch für 1 PSe/st.	1,116 cbm	1,240 cbm

Der 4 pfedige Motor hatte eine Bohrung des Arbeitszylinders von 200 mm, der Pumpe von 165 mm; der Hub beider Kolben war 180 mm.

Ähnliche Zweitaktmaschinen wurden zur gleichen Zeit von GEBr. KÖRTING-Hannover und BUSS, SOMBART & Co in Magdeburg ausgeführt.

Benz.

Der Zweitaktmotor „Benz“ entstand 1884; nachdem er fast ein Jahrzehnt den Markt behauptet, wurde auch er durch eine billigere Viertaktmaschine abgelöst. In Deutschland betrieb die Firma BENZ & Co in Mannheim den Bau, der übrigens von ausländischen Lizenzfirmen noch eifrig weitergeführt wurde, als das Stammhaus den Zweitakt längst aufgegeben hatte.

Das vordere Zylinderende a des liegenden Kreuzkopfmotors, Fig. 62 und 63, ist geschlossen und als Luftpumpe gestaltet, deren Eintritts- und Austrittswege ein Flachschieber b steuert. Vom Schieberkasten führt der Druckkanal b' in den dicht geschlossenen Hohlraum des Maschinenrahmens, aus dem die Luft durch Rohr c rechtzeitig in den Verdichtungsraum d geleitet wird. Eine besondere kleine Pumpe e, deren Kolben an dem verlängerten Kreuzkopfbolzen hängt, fördert das Leuchttgas unmittelbar in den Arbeitszylinder. In den Verdichtungsraum d münden das Gasventil f, das Lufteinlaßventil g und das Auslaßventil h; die Kurbelwelle treibt ersteres durch ein Exzenter, letztere beiden durch einen in der Exzenter scheibe steckenden Kurbelzapfen an. Den Strom für den elektrischen Zünder i erzeugt eine vom Schwungradaus angetriebene kleine Dynamomaschine, wobei ein am Zylinderkopf sitzender und von der Hebelwelle k mitbewegter Unterbrecher die einzelnen Stromstöße regelt.

Der Ausdehnungsdrukbtivt die Hauptkolben auswärts, der dabei auf seiner äußeren Seite die ausgesaugte Luft in den Gestellraum schiebt und darin auf 0,15 bis 0,3 at verdichtet. Pumpe e saugt gleichzeitig eine Ladung Leuchttgas an. Kurz vor Ende des Ausdehnungshubes hebt Welle k bzw. Hebel l zunächst das Auslaßventil h und nach vollzogenem Spannungsausgleich auch das Lufteintrittsventil g an, sofern dessen freibeweglicher Kegel nicht schon vorher durch die verdichtete Luft aufgestoßen wurde. Diese strömmt durch den Ablenker g' geführt in der unteren Zylinderhälftte gegen den Arbeitskolben und verdrängt dabei die in der oberen Hälfte zurückströmenden Abgase durch das Ventil h. Luftstrom und Abgasstrom sind also im gleichen Raume entgegengesetzt gerichtet. Das Ausspülen des Verbrennungszylinders d dauert bis zur Hälfte des Kolbenrückhubes an; dann schließen sich die Ventile g und h nacheinander und gleich darauf beginnt die Gaspumpe e durch Ventilchen f in den Raum d zu fördern. Nahe dem inneren Hubwechsel schließt sich das Gasventil f und der Zünder i bringt nun das Gemisch zur Verpuffung. Inzwischen hat Schieber b den Saugkanal geschlossen und den Druckkanal b' freigekoppelt, so daß beim Ausdehnungshube der hohe Rahmenraum von neuem mit Spülluft ausgetauscht wird.

Die Geschwindigkeitsregelung beruht auf Veränderung der von Pumpe e angesaugten Gasmengen. Zu dem Zwecke ist vor dem eigentlichen Saugventil des Gaspumpes e ein Drosselventil angebracht, dessen Kegel durch einen Fliehkraftregler der Belastung des Motors entsprechend eingestellt wird. Um beim Abdrehen eine genügend hohe Umlaufzahl der
Zünddynamo zu erhalten, ist diese mit einer zweiten kleineren Rillenscheibe versehen, auf welche vor dem Ingangsetzen die Treibschnur gelegt wird.

Betriebsergebnisse. Es liegt nur ein einwandfreier Prüfungsbericht vor. Ein 1886 auf der Karlsruher Ausstellung für Kleingewerbe untersuchter 4 pferdiger Motor verbrauchte bei 5,61 PS e Bremseinstellung und 152,6 Umdr./min. 707 ltr Gas für 1 PS e/st.
bei 2,69 PS e Bremseinstellung und 161,1 Umdr./min. 1209 ltr Gas für 1 PS e/st.
bei Leerlauf und 140,5 Umdr./min. 2402 ltr Gas stündlich.

Die Wärmeausnutzung ist demnach nur bei Höchstleistung gut, bei halber Last aber schon ungünstig und im Leerlauf recht schlecht. Die Ursache dieses schnellen Zunehmens des Gasverbrauches ist hauptsächlich in dem hier unzweckmäßigen Regelverfahren zu suchen; auch läßt die gegebene Lage der Eintritts- und Austrittsventile weder eine gründliche Ausreihung der Verbrennungsgase, noch eine gute Mischung des Gases mit der Luft erwarten.

Day & Sons.

Bénier.

Dieser 1884 entstandene Zweikolbemotor Fig. 65 bis 68 war nur für Kraftgas berechnet und wurde deshalb in Verbindung mit einem Mischgasgeräte desselben Konstrukteurs geliefert. Wie BENZ u. A. führte auch BÉNÉTIER Gas und Luft getrennt in den Verbrennungszylinder a; zu dem Zwecke ist die Ladepumpe zweistufig gehalten, wobei der Raum b die Luft und der Raum b' das Gas fördert. Die Pumpe wird durch einen Kurbelzapfen vom Schwungrad angetrieben, welcher der Hauptkurbel um 90° voreilt. Den Einlaß der Ladung in den Hauptzylinder a vermittelt das Ventil c, dessen Gestänge d' mit der umrundenden Scheibe e auf der Kurbelwelle in Eingrifft steht. Der Auslaß der Abgase erfolgt durch den vom Arbeitskolben gesteuerten Kanalring f. Im Deckel des Einlaßventils e sitzt der elektrische Zünder g; die Stromverteilung vollzieht ein mit dem Steuerebezel h zusammenhängender Unterbrecher h. Die beiden Pumpenstufen b und b' haben einen gemeinsamen Rohrschieber i, der seinen Antrieb dem Exzenter k entnimmt. Das Schiebergehäuse ist durch die Rohrleitung l an den Gasgeräte angeschlossen, durch das Gasrohr m und Luftrohr m' mit dem Einlaßventil c des Hauptzylinders a verbunden. Die Luft wird durch den Kanal i' aus dem hohlen Gestellfuß entnommen. Die Geschwindigkeitsregelung beruht auf der Veränderung des Gasgehaltes, indem die in der Leitung / vorgesehene Drosselklappe durch den Regler der Belastung entsprechend eingestellt wird.

Die Wirkungsweise des Motors ist hiernach klar; es sei nur bemerkt, daß Schieber h zunächst nur Luft in den Hauptzylinder a eintreten läßt, welche die Abgasreste austreibt, bevor das Gas überström. Gemischverluste durch die Auslaßkanäle und Rückzündungen in die Pumpe sind dadurch unmöglich gemacht. Man beachte, daß die Ladepumpe b die Luft in den Generator und das fertige Gas aus diesem durch die Wäscher und Trockeneiniger saugen muß; hier ist also das Arbeitsverfahren der später allgemein aufgenommenen „Sauggasgeneratoren“ bereits in Anwendung.

Das Diagramm Fig. 64 wurde während des ersten Versuches, also bei Anthrazitbetrieb indiziert. Trotz des für Kraftgas sehr niedrigen Verdichtungs- und Verpuffungsdruckes.
ist der thermische Wirkungsgrad der Anlage mit 21,4% recht gut; die Wirtschaftlichkeit wird durch den schlechten mechanischen Wirkungsgrad sehr heruntergezogen, ist aber für damalige Verhältnisse immer noch normal. Auffällig ist der ungenügende mittlere Arbeitsdruck \((p_k = 2,65 \text{ kg/qcm})\), der ebensowohl auf eine sehr geringe spezifische Leistungsfähigkeit, als auf eine unzulängliche Belastung zurückgeführt werden kann.

Der in Fig. 65—68 dargestellte 25-pferdige Motor verbrauchte im alltäglichen Betriebe (zur Beleuchtung des Collège Stanislas in Paris) 700 g mittelmäßigen Anthrazit für 1 PSe/st.\(^1\)) Angeblich wurde die Bauart bis 325 PS ausgeführt.

1) Genie Civil 1896, Seite 67.
Tafel 12.

<table>
<thead>
<tr>
<th>Generator betrieben mit</th>
<th>Anthrazit (Heizwert 9000 WE)</th>
<th>Koks (Heizwert 6800 WE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. i. d. Min.</td>
<td>150,79</td>
<td>147,18</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>14,59</td>
<td>14,70</td>
</tr>
<tr>
<td>Mittlerer indizierter Kolbendruck</td>
<td>2,65</td>
<td>2,78</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>714 (657*)</td>
<td>752 (636)*</td>
</tr>
<tr>
<td>Brennstoffverbrauch für 1 PSe/st.</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>Heizwerk des Gases durchschnittlich</td>
<td>WE/cbm</td>
<td>1149</td>
</tr>
<tr>
<td>Wasserverbrauch des Zylinders für 1 PSe/st.</td>
<td>ltr</td>
<td>22,8</td>
</tr>
<tr>
<td>Wasserverbrauch des Gaswäschers für 1 PSe/st.</td>
<td>ltr</td>
<td>34,2</td>
</tr>
<tr>
<td>Temperatur des Kraftgases vor dem Zylinder</td>
<td>°C</td>
<td>20</td>
</tr>
<tr>
<td>Temperatur der Abgase des Zylinders</td>
<td>°C</td>
<td>300</td>
</tr>
<tr>
<td>Verbrauch an Volatile für 1 PSe/st.</td>
<td>g</td>
<td>3,3</td>
</tr>
<tr>
<td>Verbrauch an Mineralöl für 1 PSe/st.</td>
<td>g</td>
<td>10,0</td>
</tr>
</tbody>
</table>

* Nach Abzug der unverbrannten Bestandteile der Generatorasche. Die Dampferzeugung erfolgt hier durch die Generatorabwärme.

Oechelhäuser und Junkers

waren die ersten, die durch eine eigene Ausführungsform den Zweitakt in den Großmotorenbau brachten und damit diesem Arbeitsverfahren erst seine volle Bedeutung verschafften. Die grundlegende erste Gasmaschine von Oechelhäuser und Junkers (nach dem D.R.P. Nr. 66 961) zeigen Fig. 69—73; sie wurde 1893 von der Berlin-Anhalt. Maschinenbau-Akt. Ges. in Dessau ausgeführt und zunächst mit Leuchtgas ausgerüstet. In dem Arbeitszylinder a bewegen sich gegenläufig zwei Kolben b und c, von denen ersterer unmittelbar, letzterer mittels eines Umführungsgefässes auf die Kurbelwelle wirkt. Die seitlichen Zugstangen tragen die Kolben einer Luftpumpe d, die Spülleitung in dem hohlen Maschinenrahmen e auf etwa 0,35 m verdichtet, und einer zweistufigen Gaspumpe f, deren Hochdruckseite nach der Kurbel hpol genannt. Wenn am Ende des Ausdehnungshubes der Kolben c den in den Auspuffraum g mündenden Kanalkranz öffnet, so entweicht auf diesem Wege die Verbrennungsgase größtenteils ins Freie. Dann deckt Kolben b die gegenüber liegende Kanalgruppe auf und der aus dem Rahmenholzraum e dort eintretende kräftige Luftstrom treibt die mit atmosphärischer Spannung zurückgebliebenen Abgasreste zu den erstgeöffneten Kanälen hinaus. Nach Überschreitung ihrer äußeren Hubgrenzen nähern sich die Kolben b und c einander wieder, wobei die zwischen ihnen eingeschlossene Luft verdichtet wird, und gleichzeitig, d. h. während des Verdichtungshubes, die Gaspumpe f ihren Inhalt durch das Überströmventil h in den Hauptzylinder a fördert. Hierbei übertreibt der Enderdruck in der Gaspumpe infolge der Leitungs- und Ventilwiderstände die Verdichtungsspannung im Arbeitszylinder um 2 bis 3 at, was naturgemäß nur bei dem verhältnismäßig kleinen Pumpenhubvolumen des Leuchtgasbetriebes wirtschaftlich zulässig, hingegen bei armen Brenngasen unhaltbar ist1). In der inneren Kolbenstellung wird das Gemisch elektrisch entzündet, wonach die Verbrennungsgase das Kolbenpaar b c nach außen treiben. Das Hilfsventil i ist nur beim Anlaufen geöffnet, um einen Teil des Gemenges entweichen zu lassen und dadurch den Verdichtungsdruck zu vermindern. Die Geschwindigkeitsregelung erfolgt durch Veränderung des Gasgehaltes der Ladung.

Betriebsergebnisse. Der Motor arbeitete bis 1896 mit Desserer Leuchtgas und entwickelte bei 135 bis 160 Umdr/min. 200 bis 220 PSe; der Gasverbrauch betrug unter dieser Belastung etwa 455 ltr für 1 PSe/st.

Anfangs 1896 wurde die Maschine in Hörde als Versuchsleer für den Gichtgasbetrieb aufgestellt. Die Bremsleistung nahm bei dieser Gasart auf 120 bis 150 PSe ab, der Gasverbrauch auf rund 4,5 cbm für 1 PSe/st. zu. Das verwendete Hochfengas hatte einen durchschnittlichen Heizwert von 950 WE/cbm. Dieser Verbrauch ist sehr groß, indes dadurch leicht erklärlich, daß die Maschine für Leuchtgasbetrieb konstruiert worden war und für

1) Dies bestätigt auch das abweichende Ladeverfahren des späteren Gichtgasmotors von Oechelhäuser, vgl. Seite 672.
den Betrieb mit Gichtgas manche unvorteilhafte Veränderungen erfahren mußte. So wurde z. B., um das richtige Mischungsverhältnis zu erreichen, in der Gaspumpe die Spülluft und in der Luftpumpe das mit wenig Luft verdünnte Gas gefördert. Mit letzterem mußte aus zwingenden baulichen Gründen aber ausgewaschen werden, und es ging folglich ein großer Teil des Gases durch die Auspuffkanäle verloren; Abgasanalysen zeigten denn auch nicht selten bis 20% unverbrannte Gase.

Fig. 69—73. Motor von Gechelmäuser und Junkers. Erbaut 1886.
Bei 140 Umdr/min. und Leuchtgasbetrieb 220 PS, bei Gichtgasbetrieb 150 PS Höchstleistung.
Oechelhäuser.

Fig. 74. Oechelhäuser-Motor. Bauart 1896.

Das Hauptsächlichste der baulichen Anordnung geht aus Fig. 74 hervor. Die Gemischpumpe, deren Stufenkolben mit der verlängerten Stange des hinteren Arbeitskolbens gekuppelt ist, fördert auf der äußeren (kleinen) Stufe das Gas, auf der inneren Ringstufe die Spül- und Verbrennungsluft (die hintere Kolbenfläche arbeitet tot); beide Ladungen werden auf 0,2 bis 0,3 at verdichtet und getrennt in den Hauptzylinder geführt. Das einglassene Gemischvolumen beträgt bei Höchstleistung nur 3/4 des größten Zylinderraumes, womit verhüttet werden soll, daß die frischen Gase bis vor die Auspufföffnungen kommen. Bei Betrieb mit Hochofengas wird die Spülluft womöglich den vorhandenen Gebäudeflächen entnommen, wobei dann die Ladepumpe entsprechend kleiner oder einseitig wirksam gebaut werden kann. Die Auspuffgase werden unmittelbar beim Verlassen des Verbrennungszylinders durch Wassereinspritzung gekühlt.

Neuere Bauart siehe Konstruktionsstafel XXXIV und XXXV.

Betriebsergebnisse. Der erste Oechelhäuser-Motor kam 1898 auf dem Hörder Hochofenwerk in Betrieb; er hatte 480 mm Bohrung bei 800 mm Gesamthub beider Kolben und leistete bei 125 bis 135 Umdr/min. normal 300 PSe in jedem der beiden Arbeitszylinder. Der Gasverbrauch betrug bei den Übergabeprüfungen etwa 3 cbm für 1 PSe/st. bei einem Heizwert von rund 900 WE/cbm. Während der Garantieversuche vorgenommene Abgasanalysen ergaben noch 1/2 bis 1% Kohlenoxyd in den Abgasen.

Das Diagramm Fig. 75 deutet einen schnellen Spannungsausgleich an, sobald in Punkt a der Auspuffkanal zu öffnen beginnt. Ungefähr bei b werden die Lufteinlaßkanäle aufgedeckt und bald darauf auch die Kanäle für das Gemisch freigelegt. Die Einführung dauert über Totpunkt c bis zum Punkt d fort, in welchem die Kolben alle drei Kanalkränze wieder überschritten haben und die Verdichtung der Ladung beginnt.

Gebrüder Körtling haben 1898 das fünfzehn Jahre früher bei ihren Kleinmotoren (Seite 667) zugunsten des Viertaktes aufgegebene Zweitaktverfahren für große Leistungen mit Doppelwirkung wieder aufgenommen. In dem Hauptzylinder a, Fig. 76 und 77, bewegt sich der gekühlte Kolben b, der etwa 7/8 so lang wie sein Hub ist. Das Kühlwasser wird dem Kolben-
Zweitakt-Gichtgasmaschine Bauart Oechelhäuser von 1500 PSe Nennleistung bei 100 Umdr/min.

Ausgeführt von der Firma A. Borsig in Berlin-Tegel.
Kennzeichen der Hauptteile:

- a = Auslaßkanäle;
- b = Luftersatzkanäle;
- b' = Deckring der Luftersatzkanäle b, von Hand mittels Gestänge e einstellbar bei Gemischregelung;
- c = Gasersatzkanäle;
- c' = Deckring der Gasersatzkanäle c, vom Regler mittels Gestänge e und e' beeinflußt. Abdeckung beginnt auf der den Zündern gegenüberliegenden Seite des Zylinderquerschnittes, um vor den Zündern reiches Gemisch zu behalten;
- f = Gasrückströmvventil vom Regler beeinflußt zu f' = Luftrückströmvventil / Beginn des Druckhubes beziehungsweise, Vermeidung der Pumpenarbeit bei abnehmender Leistung;
- g = Anlaßventil, vom Zündgestänge mit bewegt;
- h = elektrische Abreibzünder;

Hierzugehörige Ansichten und Querschnitte mit Steuerungseinzelheiten auf Konstruktionsstafel XXXIV.

Zweitakt-Gichtgasmaschine Bauart Oechelhäuser von 1500 PSe Nennleistung bei 100 Umdr/min.

Ausgeführt von der Firma A. Borsig in Berlin-Tegel.
Die Verpuffungsmaschinen körper durch die hohle Kolbenstange mit 4 bis 5 at Druck zugeführt. Eine der Hauptkurbel um rund 110° vorwärtsstehende Stirnkurbel treibt mittels eines gemeinsamen Gestänges die Luftpumpe c und die Gaspumpe d an, welche beide durch Kolbschieber c' bzw. d' gesteuert werden. Von den Pumpen führen, wie Fig. 77 andeutet, getrennte Leitungen zu den Einlaßventilen e, in deren Gehäuse erst die Mischung von Luft und Gas vor sich geht. Für den Auslaß haben beide Zylinderseiten denselben Kanalkranz f, der also wechselweise nach der einen oder anderen Seite hin durch den Kolben b freigelegt wird. Wenn die Abdeckung beginnt, stehen die Pumpenkolben bereits auf ungefähr halbem Hube. Bis zu diesem Augenblick bleibt der Saugkanal der Gaspumpe d offen und läßt (bei voller Leistung) etwa 40% der ausgesaugten Gasmengen wieder zurücktreten. Dann schließt Schieber d' diesen Kanal und öffnet den Druckkanal, womit im Hauptsylinder a der Ladevorgang beginnt. Die Luftpumpe c hat schon von Anfang an in ihre Druckleitung bzw. in das als Aufnehmer dienende Maschinengestell gefördert, dadurch auch in den dem Einlaßventil e zunächst

In der ersten Versuchszzeit zeigte sich, daß die Spülflut durch die schrägen Einlaßventilkanäle gegen die untere Zylinderwandung gelenkt und die folglich in den oberen Teil der Bohrung gedrängten Verbrennungsgase nur unvollständig aus dem Zylinder entfernt wurden. Das sollten später die in den Einlaßkanal gebauten Ablenker g verhüten, indem sie die Spülflut beim Eintritt gleichmäßig auf den vollen Zylinderquerschnitt verteilen.

GÜLSNER, Verbrennungskraftmaschinen. 3. Aufl.

43
Betriebsergebnisse. Prof. E. MEYER hat 1900 den ersten betriebsfähigen Kraftgas-motor dieser Art, jedoch schon mit der erwähnten verbesserten Regelung versehen, geprüft. Die 300 pferdige Maschine hatte folgende Abmessungen:

<table>
<thead>
<tr>
<th>Arbeitszyylinder</th>
<th>Luftpumpe</th>
<th>Gaspumpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohrung</td>
<td>550</td>
<td>620</td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>960</td>
<td>700</td>
</tr>
<tr>
<td>Kolbenstangen-Durchmesser mm</td>
<td>vorn 130</td>
<td>vorn 75</td>
</tr>
<tr>
<td>Einfaches Hubvolumen ltr</td>
<td>228</td>
<td>211,4</td>
</tr>
<tr>
<td>Verhältnis (einschl. Stangen) rund</td>
<td>1</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Bei einem Heizwert des Kraftgases von durchschnittlich 1152 bis 1156 WE/cbm wurden die in Tafel 13 zusammengestellten Betriebswerte gefunden.

Tafel 13.

<table>
<thead>
<tr>
<th>Belastung</th>
<th>Höchstleistung</th>
<th>Halbe Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbeits-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zylinder</td>
<td>Gas-</td>
</tr>
<tr>
<td></td>
<td>Luft-</td>
<td>pumpe</td>
</tr>
<tr>
<td></td>
<td>Luft-</td>
<td>pumpe</td>
</tr>
<tr>
<td></td>
<td>pumpe</td>
<td>pumpe</td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td>101</td>
<td>105,5</td>
</tr>
<tr>
<td>Mittl. indiz. Kolbendruck vorn</td>
<td>5,61</td>
<td>0,476</td>
</tr>
<tr>
<td>Mittl. indiz. Kolbendruck hinten</td>
<td>5,32</td>
<td>0,476</td>
</tr>
<tr>
<td>Leistung bzw. Arbeitsverbr. vorn</td>
<td>PSI</td>
<td>271</td>
</tr>
<tr>
<td>Leistung bzw. Arbeitsverbr. hinten</td>
<td>PSI</td>
<td>273</td>
</tr>
<tr>
<td>insgesamt</td>
<td>PSI</td>
<td>544</td>
</tr>
<tr>
<td>Gesamte Pumpenarbeit</td>
<td>PSI</td>
<td>63</td>
</tr>
<tr>
<td>Indiz. Nettoleistung</td>
<td>PSI</td>
<td>481</td>
</tr>
<tr>
<td>Elektr. gebremste Nutzleistung</td>
<td>PSe</td>
<td>341,5</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>%</td>
<td>71</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSI/st. brutto</td>
<td>cbm</td>
<td>1,45</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSI/st. netto</td>
<td>cbm</td>
<td>1,64</td>
</tr>
<tr>
<td>Gasverbrauch für 1 PSe/st.</td>
<td>cbm</td>
<td>3,31</td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
<td>%</td>
<td>29,3</td>
</tr>
<tr>
<td>Gasverbrauch im Leerlauf bei 104 Umdr/min. 410 cbm stündlich.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Arbeitsdiagramm Fig. 78 zeigt einen guten Verlauf; in den Pumpendiagrammen Fig. 79a (Luftpumpe), Fig. 79b (Gaspumpe, volle Leistung) und Fig. 79c (Gaspumpe, Leerlauf) fällt die große Widerstandsarbeit unangenehm auf. Bei Höchstleistung verzehren die beiden Pumpen 11,6 %, bei halber Leistung sogar 19% der indizierten Bruttoleistung. Diese großen Eigenwiderstände kommen auch in dem Leerlaufgasverbrauch greifbar zum Ausdruck. In der Luftpumpe steigt die Spannung bis auf 0,8 at, in der Gaspumpe während des Leerlaufes sogar auf 1,7 at. Die weitere Entwicklung dieser, schon bei ihrer Einführung den Viertaktmotoren wirtschaftlich ebenbürtigen Zweitaktmaschine hat u. a. zu einer gründlichen Verbesserung des Regelverfahrens bzw. beträchtlichen Verminderung der Überströmspannungen geführt (vgl. die gegenwärtigen Bauarten im V. Teil, Seite 516 u. f.).
III. Ölmaschinen ohne Verdichtung.

Die Ölmotoren\(^1\) bleiben im Alter hinter den Gaskraftmaschinen nicht zurück; streng genommen sind sie sogar noch älteren Ursprungs, da den Pulvermaschinen zunächst (1791 bzw. 1794) die Ölmaschinen von Barber und Street und erst 7 Jahre später die erste Gasmaschine von Léon folgten (s. Tafel 1, Seite 628 u. 629). Bedenkt man, daß es erst nach weiteren 15 Jahren gelang, das Steinohlengas in größeren Mengen herzustellen, so wird dieses Altersverhältnis sofort verständlich. Léon's Gasmotor hatte kaum Betriebsfähigkeit erlangt als sich sein Erfinder schon bemühte, ihn für leichte Kohlenwasserstoffe verwendbar und damit in der Aufstellung unabhängig zu machen, was auch bereits 1862 gelungen sein soll\(^2\). Ähnlich gingen Otto und Langen mit ihrer atmosphärischen Gasmaschine vor, die ebenfalls von vornherein in einzelnen zwingenden Fällen mit Benzin gespeist wurde. Die Zündung besorgte dabei eine Gasolinflamme, deren Stichflamme die Zündkanäle umspülte.

Aus naheliegenden Gründen begann die motorische Ausnutzung flüssiger Brennstoffe mit Benzin und Lignin, also mit solchen leichten Kohlenwasserstoffen, die ohne künstliche Wärmezufuhr verdunsten und auf einfachste Weise in den gasförmigen Zustand umgewandelt werden können. Mehrfache Versuche, auch das Lampenpetroleum in Motoren zu verwerten, blieben lange erfolglos; erst nach Jahren gelang es, derartige schwere Öle befriedigend zu verdampfen und den Öldampf mit Luft zu einem beständigen motorischen Gemisch zu vermengen.

Sicht man von der erwähnten ausnahmsweisen Anpassung älterer Gasmaschinen an den Benzinbetrieb ab, so trifft man den ersten und zugleich einzigen Ölmotor ohne Verdichtung in der 1873 bekannt gewordenen Benzinmaschine von Hock.

Sie wurde von ihrem Fabrikanten Julius Hock in Wien fälschlich als „Petroleummotor“ auf den Markt gebracht, was zur üblichen Folge hatte, daß diese unrichtige Bezeichnung für die späteren Benzinmaschinen noch jahrzehntelang beibehalten wurde. Die Hock'sche Maschine arbeitete nach dem Verfahren Lenoirs, war indes einfachwirkend und der lange Kolben als Kreuzkopf gestaltet. (Hock scheint der erste gewesen zu sein, welcher sich der liegenden kreuzkopflösen Bauart bediente.)

Der Benzinverbrauch soll 0,7 bis 0,8 ltr für 1 PSe/st. betragen haben, was indes nicht gerade wahrscheinlich ist. Die ganze Konstruktion war unfertig und hat sich nur wenige Jahre gehalten\(^3\).

IV. Ölmaschinen mit Verdichtung.

Die ältesten, um 1873 entstandenen Ölmaschinen arbeiteten nach dem Gleichdruckverfahren und im Zweitakt (s. Seite 686). Erst zehn Jahre später wurde der Verpuffungsmotor in eigenen Bauarten für flüssige Brennstoffe auf den Markt gebracht.

1. Viertaktmaschinen.

\(^{1}\) Als solche sind alle mit flüssigen Brennstoffen arbeitende Verbrennungsmaschinen verstanden, s. Begriffsklärung auf Seite 1.

\(^{2}\) Dinglers Polyt. Journ. 1862, Seite 165.

43*
Daimler,

Das allgemein Kennzeichnende der Daimler-Motoren, deren Urmodell das Schaubild Fig. 80 wiedergibt, liegt in ihrer eigenartigen Durchbildung als leichte Schnellläufer. DAIMLER erhöhte die damals übliche Geschwindigkeit von 150 bis 160 Umdr/min. bei seinen Motoren auf 500 bis 800 und verstand es, sämtlichen Einzelteilen eine solchen ungewöhnlichen Geschwindigkeiten genügende Dauerhaltigkeit zu geben. Die wesentlichen Bauverhältnisse der Anfangsform sind in Fig. 81 bis 83 dargestellt; diese Zwillingssanordnung war für Motorfahrzeuge bestimmt, wohingegen das ortsfeste Modell nur einzylindrig, im übrigen aber gleichartig war. Beim Zwilling arbeiten beide Zylinder mit einer Umdrehung Zündungsabstand auf eine gemeinsame Kurbel. Das allseitig dicht geschlossene Kurbelgehäuse ist durch ein Paar großer Schwungradescheiben so weit ausgeführt, daß nur den beiden Schubstangen der nötige Spielraum verbleibt. Auf der Außenfläche

Fig. 80. Erster Daimler-Motor. Erbaut 1884.

Fig. 81—83. Daimler-Zwillingsmotor.

einer dieser Scheiben befindet sich eine zweimal um die Kurbelwelle geführte, in sich zurückkehrende Kurvenschleife aa', in welcher die mit dem Auslaßgestänge b verbundene Zunge c gleitet. Während der zwei Umdrehungen eines Viertaktspiels durchlaufen die Gleitungen c wechselweise den äußeren und inneren Ring, wobei die Auslaßventile nach-
einander geöffnet und geschlossen werden. Der Übergang der Zungen aus dem einen in den anderen Nutenring erfolgt durch die beide verbindende Kreuzung selbsttätig und trotz der großen Geschwindigkeit sicher. Die Einlaßventile e arbeiten ungesteuert, ebenso die Zündrohre; erstere sind an einen Verdunstungs karburator angeschlossen, aus dem der abwärts gehende Kolben abwechselnd ein überreiches Gemisch ansaugt.

Beim Kolbenaufgang tritt durch das Klappenventil f Luft in den Kurbelkasten, welche beim Niedergang auf 0,2 bis 0,3 at verdichtet und mit diesem Drucke durch die Ventile g in die Zylinder geleitet wird, sobald die Kolben durch ihren tiefsten Punkt gehen. In diesem Augenblick ist in dem einen Zylinder der Ausdehnungshub, im anderen der Saughub beendet, so daß die von unten einströmende Luft einerseits die Abgase ausstrebt, andererseits das Ladungsgewicht und damit die Leistung vergrößert. Beim Auftreffen schiebt der eine Kolben die Abgase und Spülluft aus, der andere verdichtet die frische Ladung, wobei beide auf der unteren Seite gleichzeitig eine neue Luftfüllung in die Kurbelkammer saugen. Die Kolbenventile g öffnen sich unter dem Druck der Zusatzluft selbsttätig, wenn ihre Feder teller die feststehenden Gabelstützen b erreichen und dadurch die Kegel freigegeben werden. Das jeweils unter dem Ausdehnungsdrucke stehende Ventil öffnet sich jedoch später, als auf der Saugseite, indolgedessen der Hauptteil des Zusatzluft jedesmal der neuen Ladung zugute kommt. Bei Überschreitung der gewöhnlichen Umlaufzahl rückt der Aachenregler \(t \) den Hebel \(k \) in das Bewegungsfeld des Stechers \(b' \) am oberen Ende des Auslaßgestänges \(b \), so daß jener seitlich abgelenkt wird und die Kegelstiele verfehlt. Das Kurbelgehäuse ist zum Teil mit Öl gefüllt, welches während des Betriebes aufgewirbelt und an die inneren Gleitflächen gesprüht wird.

Spiel.

Betriebsergebnisse einiger Benzin- und Petroleummotoren von Spiel sind in der folgenden Tafel zusammengestellt.

| Tafel 14 |
|-----------|-----------|-----------|-----------|-----------|-----------|
| Versuchsreihe | 1 | 2 | 3 | 4 | 5 |
| Ausführungsjahr | 1885 | 1885 | 1886 | 1892 | 1892 |
| Ausgeführt durch | Ausstellung Nürnberg | Ausstellung Halle a.S. | Ausstellung Wien | SLAY | SLAY |
| Betrieben mit | Petroleum-Naphtha | Petroleum |
| Zylinderbohrung | mm | 160 | 150 | 150 | 240 | 240 |
| Kolbenhub | mm | 280 | 280 | 280 | 400 | 400 |
| Umdr. i. d. Min. | PS | 222 | 224,2 | ? | 178 | 175,7 |
| Brennleistung | PS | 2,653 | 3,28 | 2,88 | 10,04 | 9,909 |
| Indizierte Leistung | PS | ? | ? | ? | 12,20 | 11,90 |
| Verbrauch für 1 PSst. | g | 727 | 625 | 700 | 506 | 504 |
| Wirtschaftlicher Wirkungsgrad \((I_u = 10500 \text{ WE/kg})\) | % | 8,3 | 9,6 | 8,8 | 11,8 | 119 |

Während des Versuches 3 wurden stündlich 252 ltr Kühlwasser verbraucht bei einer Temperaturzunahme von 12 auf 45°. Die Diagramme (s. Z. d. V. D. Ing. 1887, S. 89) zeigen einen Verdichtungsdruck von 2,76 bis 2,86 at, einen Verpuffungsdruck von 14,12 bis 15,8 at und einen mittleren Druck von 3,06 bis 3,965 kg/qcm.
Capitaine.

Das von Grob & Co. zuerst eingeführte Modell hat sich nur kurze Zeit halten können; es glich in seinem allgemeinen Aufbau der 1891 bis 1892 durch Umkonstruktion entstandenen nächsten Bauart, Fig. 86 und 87, von der es wesentlich nur durch eine eigentümliche Viertaktübersetzung abwich. Diese wurde mittels des in Fig. 84 und 85 gezeichneten Schaltwerkes erzielt. Der von der Kurbelwelle aus durch die Exzenterstange a' bewegte Stecher a verfehlt bei jeder zweiten Umdrehung den Auslaßkegel b; das bewirken die an dem Stecher a angebrachten pendelnden Kreuzchen c, deren wagerechte Arme abwechselnd den linken oder rechten Anschlag e treffen und dadurch wechselweise die eine oder andere der beiden Blattsfedern d spannen. Das hat wiederum ein Ein- oder Ausklinken des Stechers a also auch ein Öffnen oder Nichtöffnen des Auslaßventils b zur Folge.

Das zweite Modell Fig. 86 und 87 hat wie das erste eine Kreuzkopfführung und einen kurzen Hub. Das Einlaßventil a ist selbsttätig; den Auslaßkegel b steuert ein auf der Kurbelwelle sitzendes Exzenter e. Die Viertaktübersetzung entsteht, indem die mit halber Geschwindigkeit umlaufende Steuerwelle f während des Verdichtungshubes die gelenkige...
Exzenterstange e' seitlich durchknickt; beim Ausschubhube bleibt hingegen die Stange e' gestreckt und das Exzenter e öffnet folglich das Auslaßventil b. Das Störrädelpaar ist also von dem Eröffnungsdruck des Auslaßkegels ganz entlastet und dieser dem Exzenter e übertragen. Petroleumpumpchen g, welches am Ende des Ausschubhubes etwas Erdöl in den Verdampfer c drückt, entnimmt seine Bewegung dem Auslaßgestänge; bei zu großer Geschwindigkeit schiebt der Schwungradregler i die Stange h unter den Auslaßhebel, wonach dieser bei geöffnetem Ventil b in Ruhe und damit auch die Pumpe untätig bleibt.

Betriebsergebnisse. Nach eigenen Messungen des Erfinders verbrauchte das Stammmodell 1890 bei einer Nennleistung von 1, 2, 4 PSe für 1 PSe/st. an Petroleum 0,7, 0,6, 0,5 ltr., wobei die Geschwindigkeit 450 bis 350 Umdr. i. d. Min. betrug.

Die Angaben der Tafel 15 beziehen sich auf die neuere Bauart Fig. 86 und 87.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausführungsjahr</td>
<td>1893</td>
<td>1894</td>
<td>1894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zylinderbohrung</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>mm</td>
<td>230</td>
<td>230</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td>278</td>
<td>252</td>
<td>257</td>
<td>282</td>
<td>311</td>
<td>304,8</td>
<td></td>
</tr>
<tr>
<td>Brennstoffleistung</td>
<td>PSe</td>
<td>10,6</td>
<td>7,12</td>
<td>3,90</td>
<td>leer</td>
<td>7,34</td>
<td>1,78</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>PSI</td>
<td>12,9</td>
<td>9,47</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Verbrauch f. 1 PSe/st.</td>
<td>g</td>
<td>385</td>
<td>550</td>
<td>817</td>
<td>2720</td>
<td>271</td>
<td>448</td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
<td>%</td>
<td>15,9</td>
<td>10,6</td>
<td>7,4</td>
<td>std.</td>
<td>22,2</td>
<td>13,5</td>
</tr>
</tbody>
</table>

Bei Versuch 1 wurden in 31 Betriebsstunden 1 kg Öl und 1 kg Fett verschmiert. Das Ergebnis der Versuchsreihe 5 mit 271 g Petroleumverbrauch für 1 PSe/st. ist ungläublich günstig und nie wieder bei älteren Verpuffungsmotoren ermittelt worden; auch der Leerlaufverbrauch der Reihe 7 ist schwer zu begreifen.

Priestman.

Dieser gegen 1889 von der Firma PRIESTMAN BROTHERS in Hull gebaute Motor, Fig. 88, zählte seiner Zeit zu den besten Petroleummaschinen; er ist hauptsächlich wegen seiner eigenartigen Verpuffung und Gemischbildung beachtenswert. Der Petroleumdampf wird ununterbrochen in dem innerhalb des Gestelles liegenden Verdampfer a erzeugt, dem das Erdöl aus dem Behälter b unter rund 1 at Spannung ständig zufließt. Beim Eintritt durch ein eigenartiges Zerstäuberventil treibt ein kräftiger Preßluftstrahl das Petroleum in Form eines Staubkegels auseinander und an den heißen Verdampferwänden entlang. Der Arbeitskolben saugt durch das selbsttätige Einlaßventil c aus dem Verdampfer c die der Leistung entsprechende Menge Öldampf gleichzeitig mit der erforderlichen Verbrunnungsluft an und verdichtet das Gemisch auf 2,5 bis 3 at. Das Auslaßventil d wird mittels eines Exzentrers gesteuert; dessen Stange betätigt auch die Pumpe e für die Zerstäuber- und Anlaßluft und ferner die beiden Schleifkontakte f des elektrischen Zündstromkreises. Vor dem Anlassen muß der Verdampfer a mit zwei Heizlampen g vorgewärmt werden; im Betriebe erhalten die ihn von außen umströmenden Abgase seinen Wandungen die erforderliche Temperatur von etwa 150°. Die Handpumpe h findet ebenfalls
nur beim Ingangsetzen der Maschine Anwendung, um den Petroleumbehälter b unter Druck zu bringen. Regler i paßt durch Einstellung der Erdöl- und Luftzuführung die im Verdampfer a vorrätige Gemischmenge der Motorleistung an. Den Zündstrom liefert eine galvanische Batterie k.

![Priestman-Motor](image)

Fig. 88. Priestman-Motor.

Da bei dieser Maschine die Ladung bereits stark vorgewärmt und innig vermischt in den Zylinder gelangt, also sehr zündfähig ist, so muß die Verdichtung zur Vermeidung von Frühzündungen niedrig gehalten werden. Um höher verdichten zu können, führte PrieSMAN später gleichzeitig mit dem Gemisch etwas heisses Wasser aus dem Kühlmantel in den Zylinder ein. Eine solche Maschine von 20 PSe Leistung war 1900 in Paris ausgestellt; Fig. 89 läßt den äußeren Teil der Wassereinspritzvorrichtung derselben erkennen. Das eigentliche Einspritzventil ist ein einfaches selbsttätiges Kegelventilchen.

Betriebsergebnisse.

<table>
<thead>
<tr>
<th>Tafel 16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsreihe</td>
</tr>
<tr>
<td>Ausführungsjahr</td>
</tr>
<tr>
<td>ausgeführt von</td>
</tr>
<tr>
<td>Bohrung</td>
</tr>
<tr>
<td>Hub</td>
</tr>
<tr>
<td>Umdr. l. d. Min.</td>
</tr>
<tr>
<td>Bremsleistung</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
</tr>
<tr>
<td>Verbrauch für 1 PSe/st.</td>
</tr>
<tr>
<td>Temperatur der Abgase</td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
</tr>
</tbody>
</table>

Als Brennstoff diente für die Versuchsreihe 1 Paraffinöl $\gamma = 0,81, H = 11 000$ WE, für Reihe 2 Lampenpetroleum (Marke Day light) $\gamma = 0,7936, H = 12 000$ WE, für Reihe 3 Lampenpetroleum (Marke Russoline) $\gamma = 0,8226, H = 11 800$ WE (wie für 1 und 2 be-

1) CLERK, Gas and Oil eng., Seite 415.
2) Z. Ver. deutsch. Ing. 1895, Seite 689, mit Abbildungen von baulichen Einzelheiten, besonders der Zerstäubung.
Hornsby-Akroyd.

An der Retorte a sitzt das mit Wasser gekühlte Einspritzventil c (Einzelfigur auf Seite 350); Einlaßventil d und Auslaßventil e, beide durch Daumen d' bzw. e' gesteuert, führen unmittelbar in den Zylinder b. Zu Beginn des Saughubes drückt die vom Einlaßhebel mittbewegte Pumpe f (Einzelfigur s. Seite 348) die nötige Menge Erdöl durch das Ventilchen c in die Retorte a, an deren berippter Innenwand es sofort verdampft. Während des Verdichtungshubes schiebt der Kolben die vorher in den Zylinderraum b gesaugte Luft größtenteils in den Verdampfer a, in dem sie sich mit dem Petroleumdampf zu einem brennbaren Gemisch vereinigt. Dieses entzünden die heißen Retortenhals, worauf die Verbrennungsgase in den Zylinder b überströmen und den Kolben vorwärts treiben. (Obliglich die Verbrennung im Raum a schon während der Verdichtung eingeleitet wird, kann das Überströmen der Gase doch erst gegen Hubwechsel beginnen, da bis dahin die Geschwindigkeit der in die Retorte strömenden Luft größer ist, als diejenige des umgekehrt gerichteten Verbrennungsgasstrahles. Darin zeigt sich eben die Wirkung des engen Retortenhalses, dessen Querschnitt nur etwa 1/10 des Kolbenquerschnittes beträgt). Mit dem Einspritz-
ventülichen c ist das dem Regler unterstellte Überlauventil c' vereinigt, welches bei un-
vollständiger Belastung der Maschine einen Teil des geförderten Petroleums in den Vor-
raterraum g zurückfließen läßt. Die Geschwindigkeit wird also durch Veränderung des
Gemischreichtumgs geregt.

Am Ende des Ausschubhubes ist die Retorte a noch mit Verbrennungsgasen gefüllt;
dies hat indes auf die inneren Vorgänge keinen ungewöhnlich nachteiligen Einfluß, da der
ringum von glühenden Wänden eingeschlossene Abgase rest eine viel geringere Dichte hat,
also dem Gewichte nach die Ladung weniger verunreinigt, als wenn die Verbrennungsgase
wie gewöhnlich in einem gekühlten Verdichtungsraume verbleiben würden.

Betriebsergebnisse.

<table>
<thead>
<tr>
<th>Tafel 17.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsreihe</td>
</tr>
<tr>
<td>Ausgeführt von</td>
</tr>
<tr>
<td>Bohrung</td>
</tr>
<tr>
<td>Hub</td>
</tr>
<tr>
<td>Umr. l. d. Min.</td>
</tr>
<tr>
<td>Bremsleistung</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
</tr>
<tr>
<td>Verbrauch für 1 PS/Std.</td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
</tr>
</tbody>
</table>

Brennstoff bei Versuchsreihe 1 bis 5 Russoline von $\gamma = 0,8235$. Diagramm Fig. 94
entspricht der Höchstleistung (Reihe 3). Während des Leerlaufes enthielten die Abgase
durchschnittlich 8,63% CO_2, 9,09% O und 82,18% N; CO, H_2O und schwere Kohlen-
waßerstoffe wurden nicht gefunden, was auf eine
vollkommene Verbrennung schließen läßt. Der
große Luftüberschuß (9,09% O) geht natürlich
mit zunehmender Belastung verloren.

![Fig. 94.](image)

Versuch 7 wurde von mir als Vertreter der Erbauerin unter Kontrolle der Kgl. Eisen-
baum-Bauinspektion Saarbrücken an zwei gleichartigen Motoren der Pumpstation auf
Bahnhof Wadern gelegentlich der Übergabe derselben vorgenommen. Zum Betriebe diente
Pechelbronner Rohöl. Das Regeldiagramm Fig. 95 eines 16pferdigen Motors zeigt den
Einfluß der veränderten Brennstoffmenge auf die Flächenentwicklung.

Bänki.

Schon 1888 baute CAPITAINe einen Petroleummotor, der zusammen mit dem Gemisch
etwas Wasser ansaugte, das hohe Verdichtung ohne Frühzündung ermöglichen sollte1; es
gelang ihm jedoch nicht, die dabei auftretenden Betriebschwierigkeiten zu überwinden.
Im Jahre 1894 griff DONAX Bänki zu dem gleichen Mittel, um in seinen Motoren die Ver-
dichtung zu steigern; der von GANZ & Co. (Budapest) nach langen Versuchen eingeführte
Hochdruck-Benzinmotor mit Wassereinspritzung hat sich trotz seiner gut durchdachten
Gesamtkonstruktion und niedrigem Verbrauchswerte nicht dauernd halten können; der
gleichzeitig mit ihm entstandene DIESELiche Gleichdruckmotor war ihm bald wirtschaft-
lisch, und anscheinend auch betriebstechnisch, überlegen. Rein wärmetheoretisch be-

1 Siehe Z. Ver. deutsch. Ing. 1898, Seite 1150.
trachtet wirkt die Wassereinspritzung nachteilig auf den thermischen Wirkungsgrad von Verbrennungsmotoren ein, da sie die spezifische Wärme des Gemisches vergrößert und das Temperaturgefälle verkleinert\(^1\). Der theoretische Verlust wurde beim Bänki-Motor aber übertroffen durch den in der höheren Verdichtung liegenden Gewinn. Aus ähnlichen Gründen sind die neuen Glühkopfmaschinen auf Wassereinspritzung angewiesen.

Den allgemeinen Bau kleinerer Bänki-Motoren veranschaulichen die Fig. 96 bis 99; das einzige durch das Verfahren selbst bedingte Organ ist der vor dem selbsttätigen Einlaßventil \(a\) sitzende Doppelzweistäuber \(b\) und \(b'\), dessen von Hand einstellbare Nadelventile das Mischungsverhältnis zwischen Einspritzwasser und Benzin regeln. Während des Niederganges saugt der Kolben zugleich mit der Verbrennungsluft diese beiden Flüssigkeiten in angemessenen Mengen in den Zylinder. Das Wasser verdampft größtenteils erst während des Verdichtungshubes und verzehrt dabei so viel Kompressionswärme, daß das Gemenge auf 12 bis 16 \(at\) verdichtet werden kann, ohne die Zündungstemperatur zu erreichen. Nachdem im Totpunkt ein offenes Glührohr \(c\) die Entflammung eingelegt hat, verpufft das Gemisch mit 35 bis 40 \(at\) Spannung. Ausdehnung und Ausschub verlaufen wie gewöhnlich.

Den Kegel des Auslaßventils \(d\) steuert das Exzentergestänge \(e\) unter Vermittlung des Wälzhebels \(f\). Die Geschwindigkeit wird durch zeitweilige Aufhebung der Füllung (Aussetzer) geregelt, indem bei Überschreitung der normalen Umlaufzahl ein in dem großen Steuerungsrad \(g\) liegender Flachregler durch das Stellzeugs \(h\) den geöffneten Auslaßkegel abstützt. Dabei spannt der am unteren Ende des Kegels befestigte Ausleger gleichzeitig die Feder des Einlaßventils \(a\) so stark, daß ein Nachsaugen von Gemisch während des Reglereingriffes unmöglich gemacht ist.

\(^1\) Vgl. die Untersuchung von Schleber in Dinglers polyt. Journ. 1905, Seite 33.
Betriebsergebnisse. a) Versuche von Prof. E. Meyer, ausgeführt Ende 1899 an einem 20 pferdigen Modell von 250,3 mm Bohrung, 400 mm Hub und 2,23 ltr Verdichtungsraum. Das verwendete Benzin hatte 0,70 spezifisches Gewicht und 10 290 WE/kg unteren HeizwertⅢ.

Tafel 18.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. i. d. M.</td>
<td>210,9</td>
<td>211,5</td>
<td>212,4</td>
<td>214,4</td>
<td>218,2</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>25,2</td>
<td>19,5</td>
<td>13,2</td>
<td>6,76</td>
<td>leer</td>
</tr>
<tr>
<td>Verbrauch an Benzin für 1 PSe/st.</td>
<td>242</td>
<td>284</td>
<td>284</td>
<td>381</td>
<td>1480 stdl.</td>
</tr>
<tr>
<td>an Einspritzwasser stdl.</td>
<td>32,6</td>
<td>20,25</td>
<td>15,8</td>
<td>8,27</td>
<td>5,11</td>
</tr>
<tr>
<td>Verhältnis Einspritzwasser Benzin</td>
<td>5,34</td>
<td>3,93</td>
<td>4,20</td>
<td>3,21</td>
<td>3,45</td>
</tr>
<tr>
<td>Kühlwasserverbrauch für 1 PSe/st.</td>
<td>18,4</td>
<td>25,2</td>
<td>32,6</td>
<td>38,6</td>
<td></td>
</tr>
<tr>
<td>Kühlwassermenge in % der gesamten entwickelten Wärme</td>
<td>22,4</td>
<td>26,0</td>
<td>31,8</td>
<td>28,8</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad %</td>
<td>25,3</td>
<td>33,2</td>
<td>21,6</td>
<td>16,1</td>
<td></td>
</tr>
</tbody>
</table>

Der mittlere indizierte Kolbendruck wurde mit einem geschätzten $\eta_m = 0,85$ zu 7,6 kg/qcm berechnet, also für Verpuffungsmotoren recht groß. Die Diagramme zeigten bis 38 at Verpuffungsspannung bei 16,4 at Verdichtung. Das einem anderen Versuch entstammende Indikatordiagramm Fig. 100 hat ein $p_i \approx 7,25$ kg/qcm. In den Angaben des Brennstoffverbrauchs ist die Heizlampe für das Glühröhren, die ständig 190 g Benzin erforderte, nicht berücksichtigt.

b) Versuche von Prof. Jonas, unter Mitwirkung von Taborsky an demselben Motor ausgeführt Ende 1899. Das Benzin hatte 0,7298 spezifisches Gewicht und 10 179,5 WE/kg unteren Heizwert.

Tafel 19.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umdr. i. d. Min.</td>
<td>209,13</td>
<td>209,87</td>
<td>209,83</td>
<td>210,50</td>
<td>210,7</td>
</tr>
<tr>
<td>Bremsleistung</td>
<td>26,38</td>
<td>20,70</td>
<td>15,05</td>
<td>8,31</td>
<td>leer</td>
</tr>
<tr>
<td>Verbrauch an Benzin für 1 PSe/st.</td>
<td>221</td>
<td>235</td>
<td>261</td>
<td>326</td>
<td>1543 stdl.</td>
</tr>
<tr>
<td>an Einspritzwasser stdl. kg</td>
<td>28,246</td>
<td>16,024</td>
<td>11,094</td>
<td>6,239</td>
<td>4,635</td>
</tr>
<tr>
<td>Verhältnis Einspritzwasser Benzin</td>
<td>4,84</td>
<td>3,30</td>
<td>2,82</td>
<td>2,33</td>
<td>3,00</td>
</tr>
<tr>
<td>Kühlwasserverbr. für 1 PSe/st.</td>
<td>13,555</td>
<td>20,706</td>
<td>17,135</td>
<td>23,578</td>
<td></td>
</tr>
<tr>
<td>Temperatur der Abgase °C</td>
<td>195,5</td>
<td>195,6</td>
<td>185,8</td>
<td>171,2</td>
<td>111,0</td>
</tr>
<tr>
<td>Kühlwassermenge in % der gesamten entwickelten Wärme</td>
<td>21,7</td>
<td>26,7</td>
<td>23,6</td>
<td>27,6</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad</td>
<td>28,0</td>
<td>26,4</td>
<td>23,8</td>
<td>19,0</td>
<td></td>
</tr>
</tbody>
</table>

Der Brennstoffverbrauch ist hier also noch etwas günstiger, als bei den vorgängigen Versuchen von Prof. E. Meyer. In der niedrigen Temperatur der Abgase kommt der Einfluß der Wassereinspritzung auf die Wärmeverteilung besonders klar zum Ausdruck. Die Verbrennungsspannung schwankte je nach der Belastung zwischen 39 und 46 at bei 16,5 at Verdichtung.

Ⅲ) Z. Ver. deutsch. Ing. 1900, Seite 1062.
Haselwander.

Auch der Ölmotor dieses Erfinders hat die großen auf ihn gesetzten Erwartungen nicht erfüllt, trotz des gesunden Kerns, der in seinem Arbeitsverfahren steckt und anderen später zustatten gekommen ist. Die erste Ausführung nach Fig. 101 entstand 1898; sie verwendet zum Einblasen und Zerstäuben des Treiböles hochverdichtete Druckluft, die durch den Arbeitskolben a selbst verdichtet wird. Zu dem Zwecke ist dieser als Stufenkolben gestaltet; die obere Stufe a' dringt 5 bis 8\% (27 bis 30° Kurbelwinkel) vor Ende des Verdichtungshubes, auf der Umläche möglichst abdichtend, in den Zylinderdeckel ein und bildet dadurch zwei getrennte Verdichtungsräume b und c. Letzterer steht durch das Kanälchen d mit dem Düsenraum e des Brennstoffventils e' und dadurch auch mit dem Hauptraum b in offener Verbindung. Beim Niedergange saugt der Kolben durch das selbsttätige Ventil f nur Luft an; erst gegen Ende des Saughubes öffnet sich zwangsläufig das Ventilchen e' und läßt etwas Erdöl in die innere Düse e fließen, in der es einweilen verbleibt. Bis zum Eingriff der Kolbenstufe a' herrscht in dem gesamten oberen Zylinderraum die gleiche Spannung; danach steigt jedoch der Druck in dem abgeschnittenen Ringraum e schneller wie in der eigentlichen Verdichtungskammer b. Es strömmt folglich die in c verdrängte Luft mit großer Geschwindigkeit durch den Kanal d in den Raum b und reißt dabei den in der Düse e lagernden Brennstoff fein zerstäubt mit. Die Hauptluftmenge ist inzwischen in Kammer b auf 12 bis 20 at (je nach der Ölsorte) verdichtet und dabei so hoch erhitzt worden, daß das eingedrungene Petroleum in ihr augenblicklich verdampft und das entstandene Gemisch im Totpunkt verpuft. Das gesteuerte Auslaßventil sitzt im Zylinderdeckel unmittelbar vor dem Einlaßventile f. Die Geschwindigkeitsregelung erfolgt durch Veränderung der eingespritzten Brennstoffmenge. Beim Anlassen wird zunächst elektrisch gezündet, da bei kalter Maschine die Verdichtungstemperatur nicht genügend hoch ist.

Im ökonomischen Betriebe besorgt die Kompressionswärme die Verdampfung und Entzündung bei allen Belastungen.

Betriebsergebnisse. a) Versuche von Prof. Brauer, ausgeführt 1900 an einem Versuchsmotor von 180 mm Bohrung und 231 mm Hub; jede Versuchsreihe dauerte 30 bis 60 Minuten.

Tafel 20.

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Brennöles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Russisches Petroleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Umdr. i. d. Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260,9</td>
<td>259,1</td>
<td>259,0</td>
<td>254</td>
<td>251,1</td>
<td>255,7</td>
<td>252,4</td>
<td>267,3</td>
<td>263,5</td>
<td>269,0</td>
</tr>
<tr>
<td>Brennleistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,13</td>
<td>3,54</td>
<td>4,56</td>
<td>5,61</td>
<td>3,49</td>
<td>4,38</td>
<td>5,57</td>
<td>1,16</td>
<td>3,65</td>
<td>4,57</td>
</tr>
<tr>
<td>Brennstoffverbrauch für 1 PSe/st. g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>766,6</td>
<td>402,1</td>
<td>365,5</td>
<td>391,1</td>
<td>384,0</td>
<td>356,8</td>
<td>343,5</td>
<td>692,5</td>
<td>379,2</td>
<td>348,8</td>
</tr>
<tr>
<td>Kühlwasserverbrauch f. 1 PSe/st. kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49,48</td>
<td>43,12</td>
<td>41,69</td>
<td>43,28</td>
<td>40,18</td>
<td>28,97</td>
<td>43,18</td>
<td>40,18</td>
<td>45,15</td>
<td>40,55</td>
</tr>
<tr>
<td>Kühlwasserwärme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43,17</td>
<td>42,17</td>
<td>43,75</td>
<td>47,45</td>
<td>48,69</td>
<td>58,13</td>
<td>43,18</td>
<td>40,18</td>
<td>50,45</td>
<td>51,40</td>
</tr>
<tr>
<td>Temperatur der Abgase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>292,6</td>
<td>295,9</td>
<td>303,3</td>
<td>233,7</td>
<td>246,6</td>
<td>302,6</td>
<td>185,4</td>
<td>237,5</td>
<td>257,9</td>
</tr>
<tr>
<td>Kühlwasserwärme in % der Gesamtwärme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49,65</td>
<td>42,34</td>
<td>44,61</td>
<td>49,26</td>
<td>46,46</td>
<td>53,74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaftlicher Wirkungsgrad %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,15</td>
<td>15,75</td>
<td>17,28</td>
<td>16,27</td>
<td>9,18</td>
<td>16,77</td>
<td>18,40</td>
<td>16,80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der Brennstoffverbrauch ist dabei ungefähr 1/4 Höchstleistung am günstigsten und erreicht dann rund 345 g für 1 PSe/st. Der wirtschaftliche Wirkungsgrad $\eta_w \approx 18\%$ ist hier noch nicht erheblich größer, als er auch in gewöhnlichen Verpuffungs-Ölmotoren gefunden wird; doch ist zu berücksichtigen, daß diese Zahlen an einem alten Motor ermittelt wurden, der nur nachträglich versuchsweise für das Arbeitsverfahren Haselwanders umgebaut worden war.

Das Anlaufen erfolgte immer tadellos. Die Auspuffgase waren bei allen Belastungen und Erdölarten nahezu unsichtbar und geruchfrei, was man bei gewöhnlichen Verpuffungs-Ölmotoren nur vereinzelt behaupten kann. Daß die Verbrennung vollkommen verläuft, läßt sich auch aus der niedrigen Temperatur der Abgase folgern.

b) Versuche von Prof. E. Meyer an derselben Versuchsmaschine ergaben im Jahre 1900: bei 252 259 264 Umdr. i. d. Min. und 5,56 3,62 1,23 PSe Brennleistung, für 1 PSe/st. 380 390 725 g Verbrauch an russischem Petroleum von $\gamma = 0,816$.

c) Nach den Mitteilungen des Erfinders sind im Januar 1904 an einem 10 pferdigen Verdrängerkolben-Motor von 200 mm Bohrung und 300 mm Hub die folgenden Betriebswerte gefunden worden:

Amerikanisches Lampenpetroleum	Paraffinöl	Pechelbronner Öl								
Motorleistung	3,02	8,70	11,90	3,58	8,56	10,60	3,05	8,50	9,65	12,15 PS
Umdr. i. d. M.	252	256	250	258	252	248	253	250	254	249
Obergrenze für 1 PSe/st.	411	269	291	506	294	280	456	299	253	268 g

Hierzu gehören die beiden Diagramme Fig. 102 und 103. Das Indikatordiagramm zeigt den in Verhältnis zur Verdichtungs- und Verpuffungsspannung recht niedrigen mittleren Kolbendruck $p_i = 3,6$ kg/cm; in dem verschobenen Diagramm bezeichnen a den Eintrittspunkt, b den Austrittspunkt des Verdrängerkolbens, T_p den inneren, T_{pa} den äußeren Topfpunkt des Kolbenhubes.

Wann dieses verschobene Diagramm gleichzeitig oder doch unter annähernd gleichen Verhältnissen wie das gewöhnliche Hubdiagramm Fig. 102 indiziert worden ist (was jedoch anscheinend nicht zutraf), so ergibt ein Vergleich beider, daß die Verpuffung tatsächlich bei weitem nicht so heftig auftritt, als dies nach dem Diagramm Fig. 102 gefolget werden könnte.
2. Zweitaktmaschinen.

Das Arbeitsverfahren der Ölmaschinen läßt sich erheblich leichter in den Zweitakt bringen, als bei den Gasmaschinen; man kann mit der Verbrennungsluft die Abgase ausspülen und erst nachträglich das Treiböl einführen, womit sowohl Rückzündungen wie Brennstoffverluste durch den Auspuff umgangen werden. Auch die bei Gaszweitaktmaschinen durchweg etwas umständliche Geschwindigkeitsregelung läßt sich bei den im Zweitakt laufenden Ölmaschinen mit einfachen Mitteln erreichen, da hierbei der Brennstoff nur einen sehr kleinen Raum in der Ladung einnimmt und unschwer durch Unterbrechung oder Verminderung des Ölzususses dem Kraftbedarf angepaßt werden kann.

Auf die Spitze getriebene Verbilligungssucht hat einen „ventillosen“ Zweitakt entstehen lassen, dessen jüngste Bauart als Glühkopfmotor unter den kleinen ortsfesten Betriebsschiffs ein wenig rühmliches Dasein führt. Höheren Anforderungen an Wirtschaftlichkeit, Reichlichkeit, Sicherheit und Dauerhaftigkeit genügen derartige, von einigen Auslandswerken ganz und gar für Massenherstellung zugeschnittenen Verpuffungsölmaschinen nicht; in Fällen, wo nur Billigkeit in der Anschaffung und äußerste Einfachheit von Bedeutung ist (Lastboote, ländliche Kleinbetriebe u. dgl.) können sie gute Dienste tun. Ihre Leichtigkeit verdanken sie nur der hohen Geschwindigkeit und der nach Aufbau und Abmessungen gleich sparsamen Gesamtkonstruktion; die spezifische Leistung ist kaum so groß, als bei Viertaktmaschinen. Denn die meisten Glühkopf-Olmaschinen bringen es nur auf einen mittleren Kolbenenddruck (p_f) von 2,2 bis 2,5 kg/cm², d. h. auf weniger als die Hälfte des mittleren Verbranngedruckes in Viertakt-Verpuffungsmaschinen, womit also die verminderte Taktzahl wieder ausgeglichen ist. Vgl. die Prüfungswerte auf Seite 542 und 591. In Deutschland wird man den ventillosen Kurbelkammerzweitakt nur als Notbehelf für kleine Kraftanlagen ansehen können, so lange, bis andere einfache Ölmaschinen ohne die Übelstännde der ersteren geschaffen sind.

Söhnlein.

Soweit die Patentliteratur erkennen läßt, ist im deutschen Motorschiffbau die DAIMLERsche Kurbelkastenspülpumpe (s. Seite 676) von JULIUS SÖHNLEIN zum ersten Male bei Zweitaktmaschinen angewendet worden. Nach dem Vorbilde von DAY & SONS (s. Seite 670) steuert er die Einlaßkanäle der Pumpe a und die Überström- und Auslaßkanäle des Verbrennungszyinders f (Fig. 104), durch den Arbeitskolben, so daß die Maschine ohne Ventile und besondere Steuerungssteile auskommt. Während des Verschlußhubes entsteht in der Kurbelkammer e ein beträchtlicher Unterdruck, der in dem Kolben den Kanal c freiligt, durch die alsdann schnell einstürzende Luft ausgeglichen wird. Der vorlaufende Kolben verdichtet die Luft in dem Kurbelkasten a und läßt sie durch die Kanalgruppe d und e, nach der Auspuffkanal g aufgedeckt ist, in den Zylinder h überströmen, wobei ihr gleichzeitig aus dem Nadelventil f das Benzin zugeführt wird. Die Ausströmung der Abgase durch die neue Ladung hört in der äußeren Kolbenlage auf; das alsdann im Zylinder h befindliche Gemenge aus Abgasresten und Benzinluftgemisch entzündet sich an dem offenen Zündhütchen k, sobald der Kolben durch die innere Grenze gesteuert wird. Eine ähnliche, stehende Bauart SÖHNLEINS wurde in den letzten Jahren unter dem Namen „Solenos-Motor“ von einer Gesellschaft in Wiesbaden angeboten. Genaue Betriebszahlen fehlen mir.

1) Nach der Schweizerischen Patentschrift Nr. 4395/1891.
Güldner*.

Kurbelgehäuse a Fig. 105 bis 107 wirkt als Spülpumpe, um ihre schädlichen Räume möglichst klein zu machen, sind die Wandungen allseitig dem Bewegungsfelde des Kurbelgetriebes eng angepaßt. Die dem Gehäuse a zugewiesene Seite des Tauchkolbens b hat aus gleichen Grunde ein besonderes Futter b₁, das ringum den Stangenauslauf umschließt, und so auch die Erwärmung der Auswischluft durch den heißen Kolbenkörper b vermindert. Der zwischen letzterem und dem Futter b₁ befindliche Hohlraum c steht durch kleine Löcher e, mit den Auspuffkanälen d in Verbindung, so daß im Raum e die Luft regelmäßige wechselt kann. Die Kanäle d führen in den Ringraum e des Gestellkopfes, an den sich unten die Auspuffleitung f anschließt.

Auf dem Kurbelkasten a sitzt das selbsttätige Saugventil k der Spülpumpe, deren eigenes Druckventil das ebenfalls ungesteuerte Einlaßventil l der Verbrennungskammer m vertritt, zu welchem das

*) Diese Güldner-Motoren wurden 1893 bis 1898 von mehreren deutschen Werken hergestellt, mußten dann aber dem durch die DIESELsche Gleichdruckmaschine eingeleiteten Bestreben, mit billigem Treiböl zu arbeiten, ausgesprochen werden. Als erster marktfähiger Kurbelkammer-Zweitaktmotor deutscher Ursprungs verdient die Bauart hier Erwähnung, um so eher, da einige genaue Versuchsreihen von unparteiischer Seite vorliegen.
Kupferne Überschlämmerohre führen. Zwischen Raum a und Rohr n ist eine Lederklappe vorgesehen, die während des Saughubes das Verbindungsnrohr n absperrn soll.

Die eigenartige Form des Verbrennungsräumes m bezweckt, wenigstens im Verbrennungsraum ein rein Gemisch zu schaffen.

Bei Beginn der Verdichtung enthält der Verbrennungsräum m ein noch übergroßes, aber reines Benzineluftgemisch, der eigentliche Zylinderraum a nur Luft mit etwas Abgas nicht dem Kolbenboden. Im Verlaufe der Verdichtung wird die Luft aus u größtenteils in die Kammer n zurückgeschoben und dadurch der Ladung das normale Mischungsverhältnis gegeben. Im inneren Totpunkt ist der zwischen Kolben und Zylinderdeckel verbleibende Raum vorwiegend mit dem Abgasrest und etwas Luft gefüllt, in welche die elektrisch entzündete Ladung beim Ausdehnungshube hinüber expandiert.

Für den Petroleumbetrieb ist ein selbständiger Vergasser, Fig. 108, vorgesehen. Die Verbrennungskammer a hat wie beim Benzinmotor einen Kühlmantel b, den durch die Luft geleitet wird, bevor sie durch das Einlaßventil in den Zylinder eintritt. Von diesem Mantel b führt außer dem Einlaßventil noch das enge Anschlußrohr c mit dem Zerstäuberventil d und dem Vergaser e unmittelbar in den Verbrennungsräum a. Auf diesem Wege wird das Zylinderinnere mit der Verpuffung nötige Menge Petroleum dampf getrennt von der Auswasch- und Verbrennungsluft zugeführt. Ventilhülsen d ist doppelsitzig und durch die oberhalb des kleinen Kegelsitzes einmündende Leitung f an das Petroleumgefaß angeschlossen, das wie beim Benzinmotor unter Drueh steht. Nachdem die gespannten Auspuffgase aus dem Zylinder

GEILOHER, Verbrennungskraftmaschinen. 3. Aufl. 44
entwicken sind und das Einlaßventil sich zu öffnen begonnen hat, wird durch den auf den unteren Ventil-
teller wirkenden Luftdruck auch der Zerstäuberkegel abwärts gedrückt und damit der zweite Weg vom Kühlmantel φ zum Verbrennungsraum α freigeben. Die das Ventilgehäuse d sehr schnell durchströmende Luft reißt den Petroleumstaub, den das obere Ventil gleichzeitig gleichmäßig in die, den heißen Wänden und Rinnen des Vergasers e entlang in den Raum α. In diesem vereinigt sich das Petroleumdampfgemisch mit der durch das Hauptventil eingelassenen Luft zur normalen Ladung. Der Vergaser ist zugleich Zünder; er wird nur vor dem Anlassen durch eine kleine Lötlatte dunkelrot erhitzt.

Der Umstand, daß der gesamte Ladevorgang durch die Spülflüssigkeit vollzogen wird, erleichtert die Regulierung, da es nur der Ausschaltung der Kurbelpumpe bedarf, um auch den Verbrennungszylinder auszusetzen. Das besorgt der Achsenregler α, indem er bei Überschreitung der normalen Umlaufzahl den Sperrriegel x während des Saughubes unter den Ventilkegel k, schiebt und diesen geöffnet hält. Die von der Pumpe a angesaugte Luft wird dann statt in das Roht α bzw. die Kammer m umbenutzt ins Freie geschoben; Einlaß- und Brennstoffverteil x bzw. p bleiben also geschlossen, und der Arbeitszylinder ist mit Abgasen gefüllt. Sobald der Regler den Kegel k freigibt, beginnt das Ladem wieder. Mit der beschrie-
benen Geschwindigkeits- und Leistungsgeregulierung ist auch eine ständige Regelung der Temperatur der Verbrennungsapparate m verknüpft. Die Regulierung der Ladung durch den Regler x unterbrochen, so hört auch die Kühlung ohne weiteres auf, wohingegen umgekehrt dann, wenn Zündung auf Zündung folgt, also die Wärmeemission am größten ist, auch die Kühlung am stärksten wird, da alsdann Ladung auf Ladung über die Mantelflächen der Verbrennungsapparate m streicht.

Sobald der Motor angedreht wird, überträgt sich der Luftdruck aus Kurbelkammer a durch das Mittelloch des Schmiergefässes c, Fig. 107, auf den Ölspiegel im Innenraume x, und das Öl wird dadurch in dem schmalen Ringraum y aufwärts gedrückt. An der höchsten Stelle von x zweigen die Tropfen-
zähler ab, aus denen das Öl den einzelnen Schmierstellen zugeführt wird. Die genaue Einstellung der Tropfenzahl erfolgt jedes Mal, wenn in der Fabrik beim Einlaufen des Motors. Im Oberen Ende des Mittelloches liegt eine kleine Rückschlagkugel, die den Druck im Schmiergefäss während des Betriebes annähernd unverändert hält. An derselben Stelle ist aber eine eine Entlüftungsöffnung vorgesehen, durch welche der Überdruck im Innenraume x allmählich entweicht, wenn im Kurbelkasten a die Verdichtung aufgelassen werden, d. h. wenn die Maschine stillsteht. Ab dann sinkt die äußere Druckkraft bis unter die Ablaufkanäle der Tropfenzähler, und die Schmierung hört auf.

Durch das Gefäß y werden nur der Kolben, der Kolbenbolzen und der Kurbelzapfen geschmiert; den beiden Lagerzapfen dient das im Kurbelkasten a abgeschleuderte Tropfl Ölschmierstoff. Dazu wird folgende Anordnung benutzt: Vom tiefsten Punkte des Gehäuses v führen zwei enge Röhren x, Fig. 107, zu den Kurbellagerfüßen y, und leiten das abtropfende Öl in deren Hohlräum ab. Auf denselben Wege überträgt sich auch der Luftdruck aus a nach x, und dieser treibt das Öl durch die Steigrohre y, unter die Lagerzapfen. Einfachste Regelventile mit feinen Entlüftungsöffnungen sperren hier, wie beim Schmiergefäss x, die Ölkammern x, vom Saughube von dem Gehäuse a ab und lassen beim ruhenden Motor den Überdruck auf dem Tropfl in einigen Augenblicken entwischen. Die in den Lagerschalen eingeschlossenen Dichtringe ζ sind aus Weißmetall gegossen; sie können von außen über eine Schraube leicht nachgezogen werden.

Betriebsergebnisse enthält folgende Tafel nach unabhängigen Prüfungen aus den Jahren 1896 und 1897. Versuche 1 bis 3 fanden unter Achtung eines Bevollmächtigten des VEREINES DEUTSCHER SPIRITUS- KERNAUSFÄLLEN W. LEDERER von Freiburg an einem fahrbaren Motor aus. Die übrigen Angaben entstammen gelegentlich Abnahmeprüfungen in den Werk-
stätten ausführender Firmen. Der günstige mechanische Wirkungsgrad der Motoren verdient hervorgehoben zu werden, da man gerade in dieser Hinsicht den Zweitakt gewöhnlich als bedenklich betrachtet.

Tafel 21.

<table>
<thead>
<tr>
<th>Versuch Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoff</td>
<td>88,7 prozent. Spiritus</td>
<td>Petroleum</td>
<td>Benzin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennleistung</td>
<td>PS</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>5,0</td>
<td>10</td>
<td>4,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Zylinderbohrung</td>
<td>mm</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>150</td>
<td>185</td>
</tr>
<tr>
<td>Kolbenhub</td>
<td>mm</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>200</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Umdrehungen in der Minute</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>300</td>
<td>300</td>
<td>265</td>
<td>400</td>
</tr>
<tr>
<td>Mittlerer indizierter Kolbenenddruck</td>
<td>kg/cm²</td>
<td>3,05</td>
<td>2,72</td>
<td>3,48</td>
<td>3,20</td>
<td>3,54</td>
<td>4,1</td>
<td>4,45</td>
</tr>
<tr>
<td>Brennstoffleistung</td>
<td>kPE</td>
<td>3,87</td>
<td>3,14</td>
<td>3,91</td>
<td>2,75</td>
<td>6,20</td>
<td>11,2</td>
<td>4,5</td>
</tr>
<tr>
<td>Indizierte Leistung</td>
<td>kSI</td>
<td>3,92</td>
<td>3,58</td>
<td>4,60</td>
<td>7,55</td>
<td>13,9</td>
<td>5,94</td>
<td>6,8</td>
</tr>
<tr>
<td>Mechanischer Wirkungsgrad</td>
<td>%</td>
<td>86</td>
<td>87,8</td>
<td>85</td>
<td>82</td>
<td>80</td>
<td>81,3</td>
<td>80</td>
</tr>
<tr>
<td>Brennstoffverbrauch stündlich</td>
<td>kg</td>
<td>2,58</td>
<td>1,10</td>
<td>4,4</td>
<td>1,9</td>
<td>3,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennstoffverbrauch für 1 kPS/Std.</td>
<td>kg</td>
<td>0,76</td>
<td>0,40</td>
<td>0,393</td>
<td>0,34</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennstoffverbrauch für 1 PS/Std.</td>
<td>kPE</td>
<td>0,71</td>
<td>0,40</td>
<td>0,393</td>
<td>0,34</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlwasserleistung</td>
<td>kPS</td>
<td>51</td>
<td>51</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlwasserverbrauch stündlich</td>
<td>kPS</td>
<td>6,16</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abflussleistung</td>
<td>°C</td>
<td>73</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durch das Kühlwasserabgeführte Stündl. WE</td>
<td>2970</td>
<td>2910</td>
<td>2970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durch das Kühlwasserabgeführte 1 kPS/Std. WE</td>
<td>813</td>
<td>813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durch das Kühlwasserabgeführte 1 PS/Std. WE</td>
<td>927</td>
<td>927</td>
<td>1208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>