C. Flüssige Brennstoffe.

Mit Vernachlässigung von ein paar unwichtigen Abarten lassen sich die flüssigen Treibmittel der heutigen Verbrennungskraftmaschinen auf 3 Ursprungsgruppen zurückführen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Rohes Erdöl: daraus</td>
<td>a) helles Teeröl</td>
<td>a) Benzol u. a. Leichtöl.</td>
</tr>
<tr>
<td>b) Leucht-Petroleum;</td>
<td>b) Gasöle</td>
<td>b) Kroosotöl</td>
</tr>
<tr>
<td>c) Benzine, leichte u. schwere;</td>
<td>c) schwere Paraffinöle.</td>
<td>c) Anthrazinöl.</td>
</tr>
<tr>
<td>d) Gasöle, und daraus</td>
<td>(γ=0.88—0.90; (H_a \approx 9800\text{WE/kg}))</td>
<td>(γ=1.00—1.1; (H_a \approx 8800\text{WE/kg}))</td>
</tr>
<tr>
<td>e) Gasteeröl (noch selten).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Für Kleinmotoren kommen außer den vorstehenden Destillationsprodukten Petroleum, Benzin und Benzol noch Spiritus und dessen Mischungen mit Benzol gelegentlich zur Anwendung.

I. Das Erdöl und seine Destillate.

Als natürliche Kohlenwasserstoffverbindung enthält das Erdöl 80 bis 86 % Kohlenstoff und 15 bis 16 % Wasserstoff als Hauptelemente, daneben einige Prozent verunreinigende Beimischungen. Die Zusammensetzung weicht bei den verschiedenen Ölen je nach Fundort und geologischem Alter etwas voneinander ab, wie folgende Tafel zeigt 1).

Tafel 80. Erdöl-Analysen (nach Veit).

<table>
<thead>
<tr>
<th>Arten und deren Ursprungsland</th>
<th>Spez. Gew. bei 0°C</th>
<th>Kohlenstoff C</th>
<th>Wasserstoff H</th>
<th>Sauerstoff und Verunreinigung</th>
<th>Oberer Heizwert (H_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amerikanisches Petroleum</td>
<td>0,820</td>
<td>83,4</td>
<td>14,7</td>
<td>1,9</td>
<td>9771 ?</td>
</tr>
<tr>
<td>Schwere Naphtha a. Westvirginien</td>
<td>0,873</td>
<td>83,5</td>
<td>13,3</td>
<td>3,2</td>
<td>10180</td>
</tr>
<tr>
<td>Leichte Naphtha a. Westvirginien</td>
<td>0,841</td>
<td>84,3</td>
<td>14,1</td>
<td>1,6</td>
<td>10223</td>
</tr>
<tr>
<td>Leichte Naphtha a. Pennsylvanien</td>
<td>0,816</td>
<td>82,0</td>
<td>14,8</td>
<td>3,2</td>
<td>9963</td>
</tr>
<tr>
<td>Schwere Naphtha a. Pennsylvanien</td>
<td>0,886</td>
<td>84,9</td>
<td>13,7</td>
<td>1,04</td>
<td>10672</td>
</tr>
<tr>
<td>Naphtha aus Parma</td>
<td>0,786</td>
<td>84,0</td>
<td>13,4</td>
<td>1,8</td>
<td>10121</td>
</tr>
<tr>
<td>Naphtha aus Peckelbronn</td>
<td>0,912</td>
<td>86,9</td>
<td>11,8</td>
<td>1,9</td>
<td>9708 ?</td>
</tr>
<tr>
<td>Naphtha aus Peckelbronn</td>
<td>0,892</td>
<td>85,7</td>
<td>12,0</td>
<td>2,3</td>
<td>10200</td>
</tr>
<tr>
<td>Naphtha aus Schwabweiler</td>
<td>0,861</td>
<td>86,2</td>
<td>13,3</td>
<td>0,5</td>
<td>10458</td>
</tr>
<tr>
<td>Naphtha aus Schwabweiler</td>
<td>0,839</td>
<td>79,5</td>
<td>13,6</td>
<td>5,9</td>
<td>10458</td>
</tr>
<tr>
<td>Naphtha aus Hannover</td>
<td>0,892</td>
<td>80,4</td>
<td>12,7</td>
<td>6,9</td>
<td>10458</td>
</tr>
<tr>
<td>Naphtha aus Hannover</td>
<td>0,955</td>
<td>86,2</td>
<td>11,4</td>
<td>2,4</td>
<td>10458</td>
</tr>
<tr>
<td>Naphtha aus Ostgalizien</td>
<td>0,870</td>
<td>82,2</td>
<td>12,1</td>
<td>5,7</td>
<td>10085</td>
</tr>
<tr>
<td>Naphtha aus Westgalizien</td>
<td>0,885</td>
<td>85,3</td>
<td>12,6</td>
<td>2,1</td>
<td>10231</td>
</tr>
<tr>
<td>Naphtha aus Balachany bei Baku</td>
<td>0,882</td>
<td>87,4</td>
<td>12,6</td>
<td>0,1</td>
<td>11700</td>
</tr>
<tr>
<td>Leichte Naphtha aus Baku</td>
<td>0,884</td>
<td>86,8</td>
<td>13,6</td>
<td>0,1</td>
<td>11460</td>
</tr>
<tr>
<td>Schwere Naphtha aus Baku</td>
<td>0,938</td>
<td>86,6</td>
<td>12,3</td>
<td>1,1</td>
<td>10800</td>
</tr>
<tr>
<td>Naphthanrückstände aus Baku</td>
<td>0,928</td>
<td>87,1</td>
<td>11,7</td>
<td>1,2</td>
<td>10700</td>
</tr>
<tr>
<td>Naphtha aus Jawo</td>
<td>0,923</td>
<td>87,1</td>
<td>12,0</td>
<td>0,9</td>
<td>10831</td>
</tr>
<tr>
<td>Schweres Erdöl aus Ogaio</td>
<td>0,985</td>
<td>87,1</td>
<td>10,4</td>
<td>2,5</td>
<td>10081</td>
</tr>
</tbody>
</table>

Der Heizwert der Rohnaphta und deren Destillate bewegt sich zwischen 9500 und 11500 W/kg, liegt daher durchschnittlich bei 10 500 W/kg. Bei woraus sich ein Schluß auf das vorhandene gewisse Mengen von Fettkohlenwasserstoffen bzw. aromatischen Kohlenwasserstoffen vermuten läßt. Die Selbstzündung und Brennung erfolgen um so sicherer, je geigerter das Öl zur Ölgasbildung ist, d. h. je größer die Ausbeute an Ölgas bei Verhältnismäßig niedrigem Druck und geringer Temperatur ist. Steinkohlenpeueröle bedürfen zur Ölgasbildung einer größeren Wärmeproduktion oder längerer Zeit als Brannewieröl (Seite 32 in Heft 55 der Mitteilungen über Forschungsarbeiten.) Die Versuche wurden 1907/08 durchgeführt; die erst nach dieser Zeit erprobte Ausnutzung von schwerbrennenden Ölsorten mit Hilfe von Zündöl bleibt darin noch unberücksichtigt.

1) In Rußland und Galizien Masut, rein russisch auch Ostakty, in Rumänien Pakura genannt.

genau gegebener Zusammensetzung kann die sogenannte Verbands-Heizwertformel Anwendung finden. Setzt man darin statt 8100 und 29000 die genauen Werte der Verbrennungswärme (für C = 8080 WE, für H = 28800 WE) und den Anteil statt in kg in Gewichtsprozent, so ist

\[H_u = 80,8 C + 288 \left(\frac{H}{8} \right) \text{WE/kg} \].

(1)

Vollkommen reines Leuchtöl ist eine Kohlenwasserstoffverbindung C_{18}H_{38} von \(\gamma = 0,792 \) spezifischem Gewicht, welche also in 1 kg, entsprechend den Atomgewicht 12 für C und 1 für H,

\[12 \cdot 13 + 1 \cdot 28 = 0,848 \text{ kg O} \quad \text{und} \quad 1 \cdot 28 = 0,152 \text{ kg H} \]

enthält. Hieraus fänd man sich den untere Heizwert von 1 kg C_{18}H_{38}

\[H_u = 0,848 \cdot 8080 + 0,152 \cdot 28800 = 11,227 \text{ WE/kg}. \]

(2)

Womöglich erfolgt die Bestimmung des Heizwertes solcher Erdöle, die sich in gegebenen Brennern noch rein verbrennen lassen, durch das Kalorimeter.

Die Berechnung des theoretischen Luftbedarfes geschieht in der Regel nach der zweiten Verbandsformel (s. Theoret. Anhang); aus dieser ergibt sich für die durchschnittliche Zusammensetzung des Petroleums 0,85 C, 0,14 H und 0,01 O die kleinste zur vollkommenen Verbrennung nötige Luftmenge für 1 kg Öl

\[L = \frac{2,667 \cdot 0,85 + 8 \cdot 0,14 - 0,01}{0,23} = 14,68 \text{ kg} \]

(2 a)

oder

\[L = \frac{2,667 \cdot 0,85 + 8 \cdot 0,14 - 0,01}{0,30} = 11,29 \text{ cbm.} \]

(2 b)

Da theoretischer Luftbedarf nach der durchschnittlichen Zusammensetzung der Rohöle und Destillate nur wenig verschieden ist, so kann praktisch für alle vorkommenden Erdöle von der Mindestluftbedarf zu 15 kg/kg oder 11,5 cbm/kg angenommen werden.

Tafel 82. Destillationsstufen von Erdölen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gew.</td>
<td>147</td>
<td>0,8</td>
<td>30,5</td>
</tr>
<tr>
<td>Kaiseröl</td>
<td>795</td>
<td>100</td>
<td>29,7</td>
</tr>
<tr>
<td>Gew. pensylv. Petroleum</td>
<td>800</td>
<td>100</td>
<td>15,8</td>
</tr>
<tr>
<td>Bayerisches Rohpetroleum</td>
<td>8270</td>
<td>14,7</td>
<td>12,1</td>
</tr>
<tr>
<td>Rumänisches Leuchttöl</td>
<td>8150</td>
<td>28,2</td>
<td>15,2</td>
</tr>
<tr>
<td>Galizisches Solaröl</td>
<td>8774</td>
<td>2,7</td>
<td>22</td>
</tr>
<tr>
<td>Galizisches Preisöl</td>
<td>8883</td>
<td>1,8</td>
<td>9,5</td>
</tr>
<tr>
<td>Ungarisches Balsamöl</td>
<td>8992</td>
<td>20,1</td>
<td>15,0</td>
</tr>
<tr>
<td>Deutsches Rotöl</td>
<td>870</td>
<td>3,7</td>
<td>38,9</td>
</tr>
<tr>
<td>Deutsches Gelb-Paraffinöl</td>
<td>860</td>
<td>2,4</td>
<td>55,0</td>
</tr>
<tr>
<td>Deutsches Solaröl</td>
<td>8755</td>
<td>13,8</td>
<td>57,4</td>
</tr>
<tr>
<td>Deutsches Benzol</td>
<td>873</td>
<td>68%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Zur Beurteilung der Verdampfbarkeit dient die fraktionierte Destillation, bei der die Menge des übergehenden Oldampfes nach Temperaturstufen gemessen

1) Die sog. Verbandsformel ist vollständig: \(H_u = 81 \cdot C + 290 \left(\frac{H}{8} \right) + 25 \cdot S - 6 \cdot W \text{WE/kg}, \) worin also noch Schwefel (S) und Wasser (W) berücksichtigt wird. Siehe „Regeln für Leistungsversuche“ im Praktisch. Anhang.

2) Als Leuchtöl (Lampepetroleum) dürfen nach den in Deutschland und Österreich-Ungarn geltenden Bestimmungen nur solche Destillate benutzt werden, die im A. E. Z. Petroleumprüfer einen Entflammmungspunkt von mindestens 21°C (bezogen auf 760 QG) aufweisen.
wird. Die Tafel 82 enthält nähere Angaben über die Verdampfbarkeit einiger Erdöle.

Bei Verpuffungsmotoren ist das Raumverhältnis zwischen Treiböl und Luft im fertigen Gemisch für den Lieferungsgrad des Saughubes von Bedeutung; das Öl geht vor und während seiner Vermischung in den dampfförmigen Zustand über und sein räumlicher Ladungsanteil nimmt dabei beträchtlich zu. Das aus einer Gewichteinheit entstehende Öl vollständig in den Verdampfungstemperatur und ist für eine bestimmte Temperatur um so größer, je mehr leichtsiedende Bestandteile das Öl enthält bzw. je leichter dieses selbst ist. Genaue Messungen der Ausbeute bzw. des Dampfvoluems aus 1 kg flüssigen Erdöles sind selten; in einer älteren Abhandlung des Gasjournalales (1895, Seite 22) finde ich in die Tafel 83 wiedergegebenen Versuchswerte, die sich anscheinend ursprünglich auf die Fettgaserzeugung beziehen. Da in Motorzylindern die Verdampfung des Öles nie so vollkommen wie in besonderen Gaseinrichtungen vor sich geht, so wird man die Angaben der Tafel 83 für unsere Zwecke entsprechend verkleinern müssen (vielleicht auf die Hälfte). Nimmt man schätzend für leichte und mittelschwere Öle eine rund 400 fache Volumenvergrößerung im offenen (nicht unter Überdruck stehenden) Glühverdampfer an, so stellt sich das theoretische Raumverhältnis zwischen Öldampf und Verbrennungsluft auf rund 1 : 30. Ein höherer Druck im

<table>
<thead>
<tr>
<th>Tafel 83</th>
<th>Gasausbeute aus Erdölen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-Petrol.</td>
</tr>
<tr>
<td></td>
<td>naphtha</td>
</tr>
<tr>
<td>Bei einer Vergaseretemp. von °</td>
<td>600</td>
</tr>
<tr>
<td>lieferte 1 ltr Öl . . ltr Gas</td>
<td>451</td>
</tr>
<tr>
<td>lieferte 1 kg Öl . . ltr Gas</td>
<td>619</td>
</tr>
<tr>
<td>unvergaster Rest . . . 5%</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Verdampfungsraume vermindert natürlich diese Volumenzunahme; sie wird überhaupt verhindert, wenn das Treiböl erst während des Verdichtungshubes in den Verbrennungszylinder eingeführt wird (v. z. B. bei Gleichdruck- und einigen Zweitaktmaschinen). Für schwere Erdöle ist nach Tafel 83 eine Temperatur von über 800° erforderlich, um die volle Gasausbeute zu erzielen; dadurch werden die Schwierigkeiten verständlich, die die Verdampfung dieser Öle in offenen Verdampfern und ihre Verwertung in Verpuffungsmotoren verursacht.

Die Verdampfung verbraucht Wärme, die von außen (durch Vorwärzung der Luft oder Beheizung der Verdampferwände) wieder ersetzt werden muß, um die Beheizungstemperatur zu erhalten. Ist dieser Wärmeverbrauch bei den flüssigen Kohlenwasserstoffen zwar auch nicht groß (etwa 1,0—1,5 % des Heizwertes, nur bei dem Spiritus gegen 5%), so genügt er doch, um z. B. bei Einspritzvergasern von schnelllaufenden Motoren eine Temperaturabnahme bis 30° hervorzuverursachen).

2. Das Benzin wird in verschiedenen Arten angeboten, die praktisch allgemein nach dem spezifischen Gewicht gekennzeichnet, im Handel aber auch noch mit verschiedenen Phantasienamen belegt werden. Die eigentlichen Leichtbenzine (Petroläther, Gasolin) werden wegen ihrer Feuergefährlichkeit und ihres hohen Preises nur ausnahmsweise als Treibmittel benutzt; für schnelllaufende Maschinen (Fahrzeugmotoren) sind die sogenannten Motorenbenzin von 0,70 bis etwa 0,720 spezifischem

Flüssige Brennstoffe. 461

Gewicht am gebräuchlichsten, doch kommen auch die Schwerbenzine ($\gamma = 0,750$) wegen ihres niedrigeren Zollatzes und billigeren Preises für ortsfeste Verpuffungsmaschinen immer mehr zur Einführung. Man gibt für

Benzin von $\gamma = 0,690 - 0,700$ 0,700 0,710 0,715 - 0,720 0,725 - 0,735 0,740 - 0,750 die Siedegrenzen an 50 - 105° 50 - 110° 50 - 115° 70 - 115° 80 - 120°

Für ein gleichmäßig das Ladungsgemisch und regelmäßiges Zünden ist es von Wichtigkeit, daß das Benzin in möglichst engen Temperaturgrenzen siedet und nur geringe Bestandteile mit höheren Siedepunkten als 100° besitzt. Denn die leichtflüchtigen Bestandteile scheiden sich während der Verdampfung zuerst aus, während die übrigen nur träge in die Dampfphase und in die Verbrennungsluft übergehen. Einen Vergleich ermöglicht die Tafel 84, die sich auf Motorbenzine verschiedener Schere und Herkunft bezieht; bei Probe 1 und 3 sind alle Bestandteile bis etwa 100° verdampft, wohingegen bei Probe 3 und 4 noch 10 bzw. 21% rückständig waren. Ähnlich verhielten sich die Benzinsorten Nr. 5 und 6.

Destillationsstufen von Motorbenzinen.

Tafel 84. (Nach Untersuchungen des Kgl. Materialprüfungsamtes Gr. Lichterfelde bei Berlin.)

Lau-	Bezeichnung	Wirkliches	Gehalt an Schwefel	Siede-	Von 100 Rtl. wurden verdampft zwischen				
fende	nach dem	γ bei	Kohlen-	phon	40 - 70°	70 - 100°	100 - 130°	130 - 100°	über 100°
Nr.	spezifischen	15° C	Wasser-	etwa 6°					
Gewicht			stoffen	C					
1	Automobil-	0,680/685	0,6818	0	42	69,5	28,0	—	—
benzinz	2	0,680	0,6765	1,40	42	64,9	—	—	—
3	686/695	0,6866	0	42	64,9	—	34,4	9,8	—
4	0,680/700	0,6918	2,40	40	33,6	42,1	19,2	2,2	—
Handels-	5	0,700/715	0,7075	1,20	44	30,6	50,8	16,2	—
benzinz	6	0,700/720	0,7060	2,60	48,0	18,8	47,2	26,6	5,5

Bezogen auf atmosphärische Spannung und Temperatur, ferner vollkommene Verdampfung vorausgesetzt liefert 1 kg Motorbenzin rund 250 ltr oder 1 ltr flüssiges Benzin etwa 160 ltr Benzindampf. In Wirklichkeit ist die spezifische Dampfmenge erheblich kleiner, weil das Benzin in den Einspritzvergasern größtenteils nur zerstäubt oder in Nebel umgewandelt wird, wonach die eigentliche Vergasung erst im Zylinder sich abspielt.

Neumann stellte für das in seiner vorgenannten Arbeit behandelte Motorbenzin die folgenden chemischen und physikalischen Größen fest:

Spezifisches Gewicht 0,719 bei 15°; Bestandteile 85% Kohlenstoff und 14,9% Wasserstoff; theorethischer Luftbedarf 12,57 cbm auf 1 kg; dafür gültige Verbrennungsgleichung:

\[1 \text{ kg Benzin} + 12,57 \text{ cbm Luft} = 1,780 \text{ cbm CO}_2 + 1,818 \text{ cbm H}_2\text{O} + 9,93 \text{ cbm N}_2. \]

Oberer Heizwert 10 894 WE/kg; Verbrennungswasser 1,171 kg/kg, \(H_u = 10181 \text{ WE/kg}. \) Auf 1 kg Benzin kommen 0,228 cbm gesättigten Benzindampf von 120 WE Erzeugungs- und 74 WE/kg Verdampfungswärme. Diesen Benzinz ergab im Versuchsmotor die günstigste Ausbeute bei 10% Luftüberschuß, d. h. bei rund 14 cbm oder 16 kg Luft auf 1 kg Benzin.

1) Über den Einfluß der Schwere und Siedetemperatur von Benzin auf die Lagerung und Verzollung siehe Praktisch. Anhang.
3. Das Gasöl (auch Blauöl genannt) ist das Mittelöl unter den Erdöldestillaten; es ist für die Verarbeitung auf Leuchtpetroleum zu hochsiedend, für die Schmierölzerzeugung zu niedrig siedend, deshalb in großen Mengen zu technischen Zwecken verfügbar. Für den Dieselmotor war das Gasöl lange Jahre das begehrteste Treibmittel; erst in der letzten Zeit leitet das fortwährende Steigen seines Verkaufspreises in Deutschland einen Umschwung zugunsten der viel billigeren Teeröle usw. ein. Die wichtigsten Eigenschaften läßt Tafel 85 erscheinen.

Tafel 85.
Eigenschaften von verschiedenen Gasölen.

<table>
<thead>
<tr>
<th></th>
<th>Spezifisches Gewicht</th>
<th>Flammpunkt °C</th>
<th>Erstarungs- punkt °C</th>
<th>Siedepunkte °C</th>
<th>Heizwert</th>
<th>Oberer WE/kg</th>
<th>Unterer WE/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galizisches Gasöl</td>
<td>0,868</td>
<td>65</td>
<td>+1</td>
<td>bei 300 350 380°</td>
<td>—</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>Amerikanisches Gasöl</td>
<td>0,855</td>
<td>70</td>
<td>−10</td>
<td>sieden über 24 88 98%</td>
<td>—</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,864/88</td>
<td>65</td>
<td>0</td>
<td>bei 174 195 380°</td>
<td>—</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,863</td>
<td>82</td>
<td>—</td>
<td>sieden über Spuren 10 100%</td>
<td>11000</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,840</td>
<td>55</td>
<td>—</td>
<td>sieden über Spuren 6 27%</td>
<td>10000</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,860</td>
<td>65</td>
<td>—</td>
<td>sieden über Spuren 6 27%</td>
<td>10000</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,853</td>
<td>67</td>
<td>—</td>
<td>sieden über Spuren 6 27%</td>
<td>9834</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,86/87</td>
<td>75</td>
<td>−25</td>
<td>bei 220 240 300°</td>
<td>11000</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,879</td>
<td>75</td>
<td>—</td>
<td>sieden über Spuren 50 98%</td>
<td>11000</td>
<td>10000</td>
<td>—</td>
</tr>
<tr>
<td>"</td>
<td>0,886</td>
<td>66,5</td>
<td>—</td>
<td>sieden über Spuren 7,1 68,7%</td>
<td>9896</td>
<td>10000</td>
<td>—</td>
</tr>
</tbody>
</table>

Die Zusammensetzung des Gasöles ist durchschnittlich etwa 86% C und 13% H und 1% O + N + S. Daraus theoretischer Luftbedarf mindestens 11 cbm auf 1 kg. Zähflüssigkeit bei gewöhnlicher Temperatur 1,5—3 Engler-Grade).

II. Die Braunkohlenöle.

1. Das Solaröl hat ein spezifisches Gewicht von 0,825—0,830, einen Flammpunkt von 45—50° und eine Zähflüssigkeit von 1,05—1,10 Graden.

 Von 100 Rtl. sieden bei 150—170 200 250 270°
 ungefähr Spuren 40—50 80—90 fast 100%.

Seine mittlere Zusammensetzung ist 85,48% C und 12,31% H und 2,21% O + N + S darunter S allein 0,8%. Der theoretische Luftbedarf berechnet sich danach auf rund 10 cbm/kg, der untere Heizwert auf 9983 WE/kg.

Der geringe Vorrat an Solaröl und dessen höherer Preis beschränkt den Bezug überwiegend auf die Umgebung der Gewinnungsorte.

1) Begriff der Zähflüssigkeit (Viskosität) und motorische Zähflüssigkeitsgrenze nach Seite 438 unten.
2) Größere Braunkohlen-Schwelereien sind in Deutschland nur im sächsisch-thüringischen Gebiet und in Messel bei Darmstadt ansässig.
2. Das Paraffinöl. Verwertet werden als Treibmittel in der Hauptsache das dunkle, billigere Schweröl (mit Bezug auf seine ältere Benutzung zur Leuchttgas-erzeugung auch noch Gasöl genannt); daneben das leichtere Paraffinöl.

Nach Dr. Schmitz ist die durchschnittliche Zusammensetzung usw.:

spezifisches Gewicht	0,880—0,900	0,905—0,920
Flammzündung	100—120°	115—125°
Zähflüssigkeit	1,5—2,5°	2,0—2,6° (Engler)
Erstarrungspunkt	0° bis — 5°	— 6 bis + 7°
Siedebeginn zwischen	200 und 250°	220 u. 250°
bei 250° sind verdampft	5—15%	5—10%
„ 300 „ „	40—60%	5—10%
Bestandteile: 85,71 C+11,62 H+2,67 O+N+S	85,95 C+11,53 H+2,52 O+N+S,	darunter S allein bis 2%
Luftbedarf auf 1 kg	10,7 cbm	S allein 1,0
Unterer Heizwert etwa	9800 WE/kg	10,7 cbm/kg
		9750 WE/kg

Beide Braunkohlenöle enthalten 1,5—2,5% Paraffin und ungefähr ebensoviel Kreosot. Ein Paraffingehalt über 2,5% ist für die Verbrennung im Motorzylinder nachteilig; Kreosotöl soll nach Paul Rieffels Versuchen sogar bei 10—12% Anteil noch nicht stören.¹

Von den übrigen Destillaten kommt gelegentlich noch das Braunkohlenesterbenzin als Treiböl in Frage; der Bezug ist aber wegen der geringen Erzeugung sehr beschränkt. Schmitz gibt das spezifische Gewicht zu 0,780—0,810, den Entflammungspunkt zu 25—30° und den Siedeverlauf so an: Beginn bei 100—120°; 20% bei 150° und 80—100% bis 200°

III. Die Steinkohlenöle.

1. Benzol (rein C₆H₆) wird in mehreren Güte- und Reinheitsgraden verkauft. Das für Verbrennungszwecke geeignete sog. 90er-Handelsbenzol hat im gereinigten Zustande nach Dr. Schmitz² ein spezifisches Gewicht γ = 0,880—0,883, einen Flammzündung von ~15° und einen Erstarrungspunkt von 4—5° unter Null. Der Siedepunktanfang liegt bei 80°; bis 100° destillieren 90—93% über (daher die Handelsbezeichnung 90er Benzol). Die durchschnittliche Zusammensetzung ist 90,5 C + 7,8 H + 0,5 S, woraus sich der obere Heizwert zu 10 050 WE/kg, der untere zu rund 9600 WE/kg und der theoretische Luftbedarf zu 10,2 cbm/kg berechnet. Praktisch muß das Benzol mit großem Luftüberschuß verbrannt werden.

Die Aufnahmefähigkeit von 1 cbm Luft ist bei 0, 5, 10, 15, 20, 25° bezogen auf Benzoldampf in Rtl. 3,33, 4,49, 5,95, 7,75, 9,95, 12,62%, bezogen auf flüssiges Benzol für 1 cbm Luft 116,1, 156,5, 207,5, 270,2, 346,9 440 g.

¹) Vgl. Mitteilungen über Forschungsarbeiten Heft 55, Seite 9 u. f.
²) L. Schmitz, Die flüssigen Brennstoffe, Seite 69.
Benzol läßt sich in Gleichdruckmaschinen wegen seiner tragen Diffusions- und Entflammmungsfähigkeit nur unvollkommen verbrennen und ist deshalb bei diesen nicht gebräuchlich. In Verpuffungsmotoren wurde es anfangs nur als Anreicherungsmittel dem Spiritus oder dem Benzin zur Verbilligung beigemengt, doch gelingt seine Verwendung bei den neueren Bauarten auch im reinen Zustande anstandslos.

Für die Verdampfung des Benzols sind die bei Benzinmotoren gebräuchlichen Einspritzvergaser wenig geeignet; die Oberflächenvergasung hat sich besser bewährt (s. Seite 343). Der hohe Erstarrungspunkt erschwert die Verwendung des reinen Benzols bei kalter Jahreszeit, weil schon bei einem paar Grad Kälte ein krystallinischer Zustand eintritt, aus dem es erst bei Erwärmung auf +80° wieder in den flüssigen Zustand zurückgeführt wird. Störend macht sich nach längerem Gebrauch auch der unvermeidliche Schwefel- (und Thiopen)-Gehalt bemerkbar, wenn nicht regelmäßig mit einem großen Luftüberschuß gearbeitet wird.

Die Erzeugung des Benzols ist so beschränkt, daß es als Treiböl keinen großen Markt haben kann.

Über Benzol-Spiritus siehe Seite 467.

Schmidtz gibt folgende physikalische und chemische Eigenschaften der deutschen Steinkohlenteeröle als Durchschnitt an (Seite 80 seines obengenannten Buches):

Farbe: grünbraun bis dunkelbraun; Geruch: kräftig nach Teer.
Spezifisches Gewicht 1,0—1,1, im mittel 1,04—1,06.
Flammpunkt nicht unter 65° (daher Gefahrenklasse III), meist 75—85°.
Zähflüssigkeit: bei gewöhnlicher Temperatur dünnflüssig.
bei 20, 50 und 70° C etwa 1,38, 1,15, 1,04 Englergrade.
Siedeanalyse: bis 300° sollen mindestens 60% (in Rtl) überdestillieren.
Wassergehalt höchstens 1%; Schwefelgehalt 0,3—0,7%; Aschengehalt höchstens 0,05%.
Schmutzgehalt (bzw. in Xylol unlösliches) höchstens 0,2%.
Brennbare Bestandteile im Mittel 90% Kohlenstoff und 7% Wasserstoff; spezifische Wärme etwa 0,6
unterer Heizwert 8800—9200 WE/kg; kleinsten Luftbedarf rund 10 cbm/kg.

Eine durch mich veranlaßte genaue Untersuchung von französischen Steinkohlenteerölen in der Chemisch-technischen Prüfungs- und Versuchsanstalt der Hochschule Karlsruhe ergab folgende Mittelwerte:

<table>
<thead>
<tr>
<th>Steinkohlenteeröl aus</th>
<th>Douchy</th>
<th>Lens I</th>
<th>Lens II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt an Kohlenstoff</td>
<td>90,97</td>
<td>89,67</td>
<td>89,47%</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>6,09</td>
<td>6,48</td>
<td>7,06%</td>
</tr>
<tr>
<td>Schwefel</td>
<td>0,43</td>
<td>0,32</td>
<td>0,54%</td>
</tr>
<tr>
<td>Sauerstoff und Stickstoff (Rest)</td>
<td>2,51</td>
<td>3,53</td>
<td>2,93%</td>
</tr>
<tr>
<td>Destillationsrückstände</td>
<td>0,37</td>
<td>0,21</td>
<td>0,36%</td>
</tr>
</tbody>
</table>

1) Die Erzeugung wird allein in Deutschland für das Jahr 1912 zu 500 000 tons angegeben.
2) Deutsche Teerprodukte-Vereinigung G. m. b. H. in Essen.
Flüssige Brennstoffe.

<table>
<thead>
<tr>
<th>Steinkohlenteeröl aus</th>
<th>Douchy</th>
<th>Lens I</th>
<th>Lens II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberer Heizwert von 1 kg</td>
<td>9304</td>
<td>9385</td>
<td>9439 WE</td>
</tr>
<tr>
<td>unterer Heizwert von 1 kg</td>
<td>8975</td>
<td>9035</td>
<td>9058 WE</td>
</tr>
<tr>
<td>spezifisches Gewicht bei 15° C</td>
<td>1,10</td>
<td>1,05</td>
<td>?</td>
</tr>
<tr>
<td>Flammpunkte</td>
<td>83</td>
<td>63</td>
<td>64° C</td>
</tr>
<tr>
<td>Zähflüssigkeit bei 25° C</td>
<td>1,90</td>
<td>1,37</td>
<td>1,42</td>
</tr>
<tr>
<td>(in Englergraden)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15° C</td>
<td>2,60</td>
<td>1,56</td>
<td>1,58</td>
</tr>
<tr>
<td>5° C</td>
<td>4,47</td>
<td>1,87</td>
<td>1,95</td>
</tr>
<tr>
<td>— 15° C</td>
<td>8,94</td>
<td>2,78</td>
<td>3,49</td>
</tr>
</tbody>
</table>

Auch der Baustoff einiger Maschinenteile muß angepaßt werden. Denn die im Steinkohlenteeröl enthaltenen Kreosote (8—12%) greifen Kupfer, Zink und deren Legierungen, die meisten Dichtungsmaterialien usw. ziemlich stark an; Teile mit genauestem Sitz, die schon gegen kleine Abnützungen empfindlich sind, (Brennstoffpumpe, insbesondere deren Ventile und Kölben, Zerstäuberdüsen und -Nadeln; die Sitze der Ventile, Verschraubungen und Dichtungen an den Brennstoffgefäßen und Rohrleitungen usw.), müssen deshalb aus besonders widerstandsfähigem Material hergestellt werden (neben guten Eisenarten für die größeren Teile hauptsächlich hochprozentiger Nickelstahl oder Reinnickel, als Flanschendichtungen in Leim getränkte Asbestpappe usw.).

IV. Roher Steinkohlenteer.

Das Bestreben der Motorenindustrie, die Anzahl der Treibmittel für die Verbrennungsmaschine zu vergrößern, dadurch deren Bezug zu sichern und zu verbilligen, hat auch vor dem rohen Steinkohlenteer nicht Halt gemacht. Seit 1909 bestehen Versuchsmotoren, die beweisen, daß wenigstens die besseren, leichterflüssigen Teersorten keine unüberwindlichen Schwierigkeiten machen. Roher Teer ist ja als wärmereiches Heizmaterial längst bekannt; im Vertikalofenteer z. B. sind 90% Kohlenstoff und über 5% Wasserstoff enthalten, die vollkommen verbrannt gegen 8750 WE/kg abgeben. Auch der Vorrat an Rohnteer ist groß; Kokereien, Gasfabriken usw. erzeugen ständig.

V. Spiritus und dessen Mischungen.

Im Handelsgebrauche versteht man unter Spiritus den mit Wasser verdünnten, häufig auch mit einem Denaturierungsmittel vermischten, ungereinigten Alkohol, der durch Gärung des Traubenzuckers bzw. dessen Rohstoffe (hauptsächlich Kartoffeln und Getreide) hergestellt wird, wobei theoretisch 100 kg Traubenzucker 51 kg Alkohol liefern. Die wirkliche Ausbeute ist um 1/3 bis 1/4 kleiner. Die hohen Erzeugungskosten lassen eine Verwendung des Spiritus als Treibmittel nur in sehr beschränktem Maße zu; die Bemühungen des Verkaufsringes, durch eine außerordentliche Preisermäßigung den Spiritus zu einem wirtschaftlichen Brennstoff des Motorbetriebes zu machen, sind nicht von Dauer gewesen2). Technisch steht einer solchen Verwendung gar nichts im Wege; im Gegenteil, sie ist in Verpuffungsmaschinen einach, reichlich und mit einem guten thermischen Wirkungsgrad durchführbar.

Reiner, absolut wasserfreier Alkohol hat das spezifische Gewicht 0,7946, einen Siedepunkt von 78°, das Molekulargewicht 46 und die Zusammensetzung

1) Vgl. Stahl und Eisen 1911, Seite 1512.
C₃H₅ + OH = C₃H₆O. Ein Kilogramm C₃H₆O enthält nach der üblichen Annahme, den Atomgewichten C = 12, H = 1 und O = 16 entsprechend,

\[
\frac{12 \cdot 2}{46} = 0.522 \text{ kg C}, \quad \frac{1 \cdot 6}{46} = 0.130 \text{ kg H} \quad \text{und} \quad \frac{16 \cdot 1}{46} = 0.348 \text{ kg O}.
\]

Den theoretischen Luftbedarf liefert die Verbandsformel Seite 459 zu

\[
L = \frac{2.667 \cdot 0.522 + 8 \cdot 0.130 - 0.348}{0.23} \sim 9 \text{ kg/kg} \text{ oder } \sim 7 \text{ cbm/kg}.
\]

Eine genaue Berechnung der Heizwerte getrachtet die chemische Formel des Alkohols nicht, da noch unbekannt ist, in welchen Molekularverbindungen die einzelnen Atome C₃H₆O darin vorkommen. Man ist deshalb auf unmittelbare Messung hingewiesen. Nach Versuchen von Thomsen beträgt der obere Heizwert des Alkoholdampfes rund 7400 WE/kg bei einer Dichte 1,601 (bezogen auf Luft). Der untere Heizwert findet sich hieraus durch Abzug der Flüssigkeitswärme des Verbrennungswassers (1,175 \cdot 607 = 713 \text{ WE}) zu 6687 WE/kg. Prof. E. Meyer gibt hierfür \(H_u = 6480 \text{ WE/kg} \) an, wobei er die Versuchswerte von Favre und Silbermann für reinen Alkohol \(H_s = 7184 \text{ WE/kg} \) darin Wärme des Verbrennungswassers 1,174 \cdot 600 = 704 \text{ WE}) zugrunde legt. Aus dem Meyerschen Wert findet sich der untere Heizwert von 1 ltr Alkohol zu \(H_u = 6480 \cdot 0,7936 \sim 5150 \text{ WE} \). Der Spiritus hat naturgemäß ein größeres spezifisches Gewicht und eine niedrigere Heizkraft als Alkohol. Der Grad der Verdünnung, also der Wasseranteil, wird auf Grund des spezifischen Gewichtes des Spiritus nach dem amtlich heute allein gültigen Gewichts-Alkoholometer, früher allgemein nach Raumprozenten (Tralles-Skala), gemessen; die Normaltemperatur der Gewichtsprozent-Skala ist 15°C, der Volumenprozent-Skala 60°C \(F = 124/° = R = 15/° \text{ C} \) angenommen. Die Umrechnung der letzteren \((Rtl) \) in erstere \((Gtl) \) erfolgt nach der Gleichung

\[
Gtl = \frac{Rtl \cdot 0,7946}{\gamma},
\]

wenn \(\gamma \) das spezifische Gewicht des Spiritus bezeichnet. Für einen Spiritus von \(x \) Gewichtsprozenten oder \(y \) Raumprozenten ist der untere Heizwert annähernd

\[
H_u = x \cdot 6480 \text{ WE/kg} \quad \text{oder} \quad H_u = y \cdot 5150 \text{ WE/ltr}.
\]

Auch beim Spiritus ist eine genaue Berechnung der Heizkraft nicht möglich; neben dem oben erwähnten ungewissen Verbindungsverhältnis wird sie hier noch durch die gesetzlichen Denaturierungsvorschriften in den Spiritus vereitelt. Die direkte Messung (im Kalorimeter) ist also für Spiritus allein verläßlich.

Infolge des hohen spezifischen Wärmepeises für Spiritus (s. Tafel 66, Seite 446) stellt sich dessen Verwendung in Verpuffungsmotoren wirtschaftlich ungünstig. Dieser Zustand läßt sich verbessern, indem man dem rohen Spiritus einen spezifisch billigeren flüssigen Brennstoff, hauptsächlich Benzol, beimengt; dadurch wird zugleich der Heizwert und die Zündfähigkeit des Spiritus erhöht.

Flüssiges Benzol hat nach Seite 463 ein spezifisches Gewicht \(\gamma \sim 0,880 \), einen Heizwert \(H_u \sim 9600 \text{ WE/kg} \) oder \(H_u \sim 8400 \text{ WE/ltr} \); daraus berechnete sich für einen Mischspiritus aus a\% Alkohol und b\% Benzol der ungefähre Heizwert \(H_u = a \cdot 6480 + b \cdot 9600 \text{ WE/kg} \) oder \(H_u = a \cdot 5150 + b \cdot 8400 \text{ WE/ltr} \).

Enthält der Mischspiritus statt des reinen Alkohols a\% Spiritus, so ist der Heizwert des letzteren auf die line Seite der Gleichung zu bringen. Das im Handel als „Benzolspiritus“ angebotene Gemisch enthält gewöhnlich 15 — 20\% Benzolzusatz und ungefähr 7500 — 7600 WE auf 1 kg.
Tafel 86.

Umrechnung der Gewichtsprozente von Spiritus auf Normaltemperatur.

<table>
<thead>
<tr>
<th>Temperatur °C</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>77.8</td>
<td>77.8</td>
<td>79.8</td>
<td>80.6</td>
<td>81.6</td>
<td>82.6</td>
<td>83.6</td>
<td>84.6</td>
<td>85.6</td>
<td>86.6</td>
<td>87.6</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.2</td>
<td>93.2</td>
<td>94.4</td>
<td>95.6</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>77.4</td>
<td>77.4</td>
<td>79.4</td>
<td>80.4</td>
<td>81.4</td>
<td>82.4</td>
<td>83.4</td>
<td>84.4</td>
<td>85.4</td>
<td>86.4</td>
<td>87.4</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.4</td>
<td>93.4</td>
<td>94.4</td>
<td>95.6</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>77.0</td>
<td>77.0</td>
<td>79.0</td>
<td>80.0</td>
<td>81.0</td>
<td>82.0</td>
<td>83.0</td>
<td>84.0</td>
<td>85.0</td>
<td>86.0</td>
<td>87.0</td>
<td>88.0</td>
<td>89.0</td>
<td>90.0</td>
<td>91.0</td>
<td>92.0</td>
<td>93.0</td>
<td>94.0</td>
<td>95.2</td>
<td>96.4</td>
<td>97.4</td>
<td>98.2</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>76.6</td>
<td>76.6</td>
<td>78.6</td>
<td>80.6</td>
<td>81.6</td>
<td>82.6</td>
<td>83.6</td>
<td>84.6</td>
<td>85.6</td>
<td>86.6</td>
<td>87.6</td>
<td>88.6</td>
<td>89.6</td>
<td>90.6</td>
<td>91.6</td>
<td>92.6</td>
<td>93.6</td>
<td>94.6</td>
<td>95.8</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>76.2</td>
<td>76.2</td>
<td>78.2</td>
<td>80.2</td>
<td>81.2</td>
<td>82.2</td>
<td>83.2</td>
<td>84.2</td>
<td>85.2</td>
<td>86.2</td>
<td>87.2</td>
<td>88.2</td>
<td>89.2</td>
<td>90.2</td>
<td>91.2</td>
<td>92.2</td>
<td>93.2</td>
<td>94.4</td>
<td>95.6</td>
<td>96.6</td>
<td>97.6</td>
<td>98.4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75.8</td>
<td>75.8</td>
<td>77.8</td>
<td>79.8</td>
<td>80.8</td>
<td>81.8</td>
<td>82.8</td>
<td>83.8</td>
<td>84.8</td>
<td>85.8</td>
<td>86.8</td>
<td>87.8</td>
<td>88.8</td>
<td>89.8</td>
<td>90.8</td>
<td>91.8</td>
<td>92.8</td>
<td>93.8</td>
<td>94.8</td>
<td>95.8</td>
<td>96.8</td>
<td>97.6</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>75.4</td>
<td>75.4</td>
<td>77.4</td>
<td>79.4</td>
<td>80.4</td>
<td>81.4</td>
<td>82.4</td>
<td>83.4</td>
<td>84.4</td>
<td>85.4</td>
<td>86.4</td>
<td>87.4</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.4</td>
<td>93.4</td>
<td>94.4</td>
<td>95.4</td>
<td>96.4</td>
<td>97.2</td>
<td></td>
</tr>
</tbody>
</table>

Angaben des Gewichts-Alkoholometers

wahre (auf 15°C reduzierte) Spiritusstärke in Gewichtsprozent:

<table>
<thead>
<tr>
<th>Temperatur °C</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>77.8</td>
<td>77.8</td>
<td>79.8</td>
<td>80.6</td>
<td>81.6</td>
<td>82.6</td>
<td>83.6</td>
<td>84.6</td>
<td>85.6</td>
<td>86.6</td>
<td>87.6</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.2</td>
<td>93.2</td>
<td>94.4</td>
<td>95.6</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>77.4</td>
<td>77.4</td>
<td>79.4</td>
<td>80.4</td>
<td>81.4</td>
<td>82.4</td>
<td>83.4</td>
<td>84.4</td>
<td>85.4</td>
<td>86.4</td>
<td>87.4</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.4</td>
<td>93.4</td>
<td>94.4</td>
<td>95.6</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>77.0</td>
<td>77.0</td>
<td>79.0</td>
<td>80.0</td>
<td>81.0</td>
<td>82.0</td>
<td>83.0</td>
<td>84.0</td>
<td>85.0</td>
<td>86.0</td>
<td>87.0</td>
<td>88.0</td>
<td>89.0</td>
<td>90.0</td>
<td>91.0</td>
<td>92.0</td>
<td>93.0</td>
<td>94.0</td>
<td>95.2</td>
<td>96.4</td>
<td>97.4</td>
<td>98.2</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>76.6</td>
<td>76.6</td>
<td>78.6</td>
<td>80.6</td>
<td>81.6</td>
<td>82.6</td>
<td>83.6</td>
<td>84.6</td>
<td>85.6</td>
<td>86.6</td>
<td>87.6</td>
<td>88.6</td>
<td>89.6</td>
<td>90.6</td>
<td>91.6</td>
<td>92.6</td>
<td>93.6</td>
<td>94.6</td>
<td>95.8</td>
<td>96.8</td>
<td>97.8</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>76.2</td>
<td>76.2</td>
<td>78.2</td>
<td>80.2</td>
<td>81.2</td>
<td>82.2</td>
<td>83.2</td>
<td>84.2</td>
<td>85.2</td>
<td>86.2</td>
<td>87.2</td>
<td>88.2</td>
<td>89.2</td>
<td>90.2</td>
<td>91.2</td>
<td>92.2</td>
<td>93.2</td>
<td>94.2</td>
<td>95.4</td>
<td>96.4</td>
<td>97.4</td>
<td>98.2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75.8</td>
<td>75.8</td>
<td>77.8</td>
<td>79.8</td>
<td>80.8</td>
<td>81.8</td>
<td>82.8</td>
<td>83.8</td>
<td>84.8</td>
<td>85.8</td>
<td>86.8</td>
<td>87.8</td>
<td>88.8</td>
<td>89.8</td>
<td>90.8</td>
<td>91.8</td>
<td>92.8</td>
<td>93.8</td>
<td>94.8</td>
<td>95.8</td>
<td>96.8</td>
<td>97.6</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>75.4</td>
<td>75.4</td>
<td>77.4</td>
<td>79.4</td>
<td>80.4</td>
<td>81.4</td>
<td>82.4</td>
<td>83.4</td>
<td>84.4</td>
<td>85.4</td>
<td>86.4</td>
<td>87.4</td>
<td>88.4</td>
<td>89.4</td>
<td>90.4</td>
<td>91.4</td>
<td>92.4</td>
<td>93.4</td>
<td>94.4</td>
<td>95.4</td>
<td>96.4</td>
<td>97.2</td>
<td></td>
</tr>
</tbody>
</table>

III. Teil. Die Brennflüssigkeiten der Verbrauchsanlagen.
Man hat beobachtet, daß die inneren Zylinderwandungen von reinen Spiritusmotoren häufig schon nach kurzer Zeit durch Rost stark angegriffen werden; die Ursache sind gewisse, in den Verbrennungsgasen enthaltene ätzende Bestandteile. Als solche bilden sich während der ersten Oxydationsstufen Aldehyd bzw. Essigsäure, sobald Alkohol ohne bzw. mit nur geringem Luftüberschuß verbrannt wird. Bei sehr reichlicher Luftzuführung hingegen tritt auch die Essigsäure nicht mehr auf; der Alkohol oxydiert sich vielmehr zu Wasser und Kohlensäure, die nicht schädlich auf das Eisen einwirken. Das lehrt uns, die Spiritusmaschinen für möglichst großen Luftüberschuß einzurichten. Auch ein reicher Benzolzusatz verhütet die inneren Zerstörungen, indem Benzol die Bildung von Essigsäure aufhebt; statt ihrer entsteht dann das Zwischenprodukt Äthan, welches unmittelbar zu Kohlensäure und Wasser verbrennt.

Naphthalin als Treibmittel siehe Seite 347.