B. Die Brenngase.

I. Steinkohlen-Leuchtgas.

Das Leuchtgas wird durch Entgasung von mageren (bituminösen) Steinkohlen in glühenden Retorten von 75 bis 100 kg Inhalt fabrikmäßig hergestellt, wobei die verdampfbaren Bestandteile der Kohle entzogen und als Nebenerzeugnis hauptsächlich Koks, sodann Teer, Ammoniak und etwas Graphit gewonnen werden. Es liefern 100 kg Kohle etwa 25 bis 30 cbm gekühltes Gas, 50 bis 70 kg Koks, 4,25 bis 4,75 kg Teer und 8 bis 10 kg Ammoniakwasser von 1,5 bis 2,0° B. Die Retortenfeuerung verbraucht auf 100 kg Füllung bei mittleren Anlagen 15 bis 20 kg Koks, nach deren Abzug von dem Heizwert der Kohle rund 20% im Gase und 50 bis 60% im Koks und Teer wiedergewonnen werden. Die Selbstkosten des fertigen Gases schwanken je nach Größe, Einrichtung und Betrieb der Anstalt und nach den Kohlenpreisen zwischen 7 und 9 Pfennig, die Verkaufspreise des Heizgases zwischen 10 und 25 Pfennig für ein Kubikmeter.

Die Zusammensetzung des Gases ist auch in derselben Anlage ständigen Wechseln unterworfen. Seine Hauptbestandteile sind Wasserstoff (45 bis 48 Vol.-%), Sumpfgas (35 bis 38 %), Kohlenoxyd (5 bis 8 %) und einige Prozente schwere Kohlenwasserstoffe, Kohlensäure und Stickstoff. Eine Anzahl Gasanalysen sind in Tafel 67 zusammengestellt.

Der Heizwert bewegt sich zwischen 4000 und 5500 W/cbm, vereinzelt noch etwas höher. Seit Einführung des Glühlichtes und unter dem Zwange der gestiegenen Kohlenpreise ist die Heizkraft des Leuchtgases erheblich zurückgegangen; gegenwärtig dürfte der für die motorische Ausnutzung maßgebende untere Heizwert (H_u nach Seite 5) häufiger unter als über 5000 W/cbm liegen.

Die Dichte des Leuchtgases ist 0,35 bis 0,45 (Luft = 1), sein spezifisches Gewicht durchschnittlich etwa 0,52 kg/cbm. In den Gasbehältern herrscht ein Gasdruck von 100 bis 200 mm WS; das Gas tritt mit 50 bis 80 mm WS durch den Stationsregler in die Hauptleitung ein und weist in entfernten Nebenleitungen meistens nur noch 20 bis 30 mm WS Druck auf. (Deshalb ist es auch gebräuchlich, die Leuchtgasmotoren in der Fabrik mit höchstens 20 mm Druck auszuproben.) Die Gaswassertemperatur im Rohrnetz liegt im Sommer durchweg einige Grade unter, im Winter aber unter Umständen beträchtlich über der äußeren Lufttemperatur. Bei Tiefleitungen überschreitet die Temperatur des Gases nur in den kältesten bzw. heißesten Tagen die Grenzen von 5° und 15°.
Tafel 67. Leuchtgas-Analysen.

<table>
<thead>
<tr>
<th>Leuchtgas der Städte:</th>
<th>Sumpfgas</th>
<th>Wasserstoff</th>
<th>Kohlenoxyd</th>
<th>Kohlensäure</th>
<th>Sauerstoff</th>
<th>Schwere Kohlenwasserstoffe</th>
<th>Stickstoff (Rest)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₄</td>
<td>H</td>
<td>CO</td>
<td>CO₂</td>
<td>O</td>
<td>CaH₂O</td>
<td>N</td>
</tr>
<tr>
<td>Berlin (aus oberschles. Kohle)</td>
<td>32,7</td>
<td>49,7</td>
<td>9,5</td>
<td>2,5</td>
<td>.</td>
<td>4,6</td>
<td>1,0</td>
</tr>
<tr>
<td>Königsweg (nach Blommann)</td>
<td>36,5</td>
<td>49,0</td>
<td>5,6</td>
<td>1,1</td>
<td>.</td>
<td>6,8</td>
<td>1,0</td>
</tr>
<tr>
<td>Magdeburg (Gasmurn. 1900, 87)</td>
<td>30,1</td>
<td>54,9</td>
<td>7,7</td>
<td>1,4</td>
<td>0,2</td>
<td>3,3</td>
<td>2,4</td>
</tr>
<tr>
<td>Dresden (nach Schöttler)</td>
<td>33,4</td>
<td>48,7</td>
<td>8,0</td>
<td>1,5</td>
<td>1,4</td>
<td>3,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Hannover (nach Schöttler)</td>
<td>37,5</td>
<td>46,3</td>
<td>11,2</td>
<td>0,8</td>
<td>.</td>
<td>3,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Frankfurt a. M. (nach Leybold)</td>
<td>32,6</td>
<td>49,8</td>
<td>8,8</td>
<td>2,3</td>
<td>.</td>
<td>4,0</td>
<td>2,5</td>
</tr>
<tr>
<td>Bonn (nach Clerck)</td>
<td>43,1</td>
<td>39,8</td>
<td>4,7</td>
<td>3,0</td>
<td>.</td>
<td>4,7</td>
<td>4,7</td>
</tr>
<tr>
<td>Heidelberg (nach Bunsen)</td>
<td>34,0</td>
<td>46,2</td>
<td>8,9</td>
<td>3,0</td>
<td>0,6</td>
<td>5,1</td>
<td>2,2</td>
</tr>
<tr>
<td>Aachen (nach v. Herrick)</td>
<td>34,2</td>
<td>54,0</td>
<td>5,2</td>
<td>1,1</td>
<td>.</td>
<td>3,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Paris (nach Prout)</td>
<td>33,1</td>
<td>50,1</td>
<td>6,3</td>
<td>1,5</td>
<td>0,5</td>
<td>5,8</td>
<td>2,7</td>
</tr>
<tr>
<td>London (Gasmunt & Coke Co.)</td>
<td>37,6</td>
<td>48,0</td>
<td>3,7</td>
<td>.</td>
<td>0,3</td>
<td>4,4</td>
<td>6,0</td>
</tr>
<tr>
<td>Manchester (Clerck)</td>
<td>34,9</td>
<td>45,6</td>
<td>6,6</td>
<td>3,7</td>
<td>.</td>
<td>6,5</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Durchschnittlich: 34,99 CH₄, 48,51 H, 7,183 CO, 1,825 CO₂, 0,250 O, 4,560 CaH₂O, 2,700 N

Der Heizwert der Gase beträgt bei Nr. 1: ~5000 WE/cbm, bei Nr. 3: 5350 WE, bei Nr. 9: 5600 WE/cbm.

In Tafel 68 sind für das aus diesen zwölf Leuchtgasarten ermittelte Durchschnittsgas die den Konstrukteur angehenden Hauptwerte zusammengestellt; über die Berechnung der einzelnen Spalten gibt der Theoret. Anhang näheren Aufschluß.

Tafel 68. Durchschnittszahlen für Leuchtgas.

<table>
<thead>
<tr>
<th>Zusammensetzung des Leuchtgases</th>
<th>1 cbm Gas enthält</th>
<th>Hₒ in WE</th>
<th>Theoretischer Luftbedarf in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cbm</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,485</td>
<td>0,0435</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>CH₄</td>
<td>0,350</td>
<td>0,2504</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,070</td>
<td>0,0876</td>
</tr>
<tr>
<td>Schwere Kohlenwasserstoffe . .</td>
<td>C₃H₄</td>
<td>0,045</td>
<td>0,0563</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO₂</td>
<td>0,020</td>
<td>0,0333</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>O</td>
<td>0,0025</td>
<td>0,0036</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,0275</td>
<td>0,0345</td>
</tr>
<tr>
<td>Bezogen auf 1 cbm Leuchtgas</td>
<td>1,0000</td>
<td>0,5152</td>
<td>5066,0</td>
</tr>
</tbody>
</table>

Abgerundetes Ergebnis: Spezifisches Gewicht 0,52 kg/cbm. Dichte 0,4 (Luft = 1), unterer Heizwert 5000 WE/cbm oder 5000 : 0,515 = 9700 WE/kg, geringster Luftbedarf 5,25 cbm/cbm oder 6,8 kg/cbm oder 13,2 kg/kg.

II. Kraftgas.

Das Kraftgas ist ein mit blauer (entleuchteter) Flamme verbrennendes, daher nur im Motorbetriebe und zu Heizzwecken verwendetes Misch- oder Halbwassergas. Es wird in einem zur Motoranlage gehörigen Schachtgenerator erzeugt, indem man Luft und Wasserdampf durch eine glühende Koks- oder Kohleschicht führt, wobei die Kohlensäure der Verbrennungsgase zu Kohlenoxyd reduziert, der Dampf zu Wasserstoff und Kohlensäure zersetzt und letztere danach ebenfalls größtenteils zu Kohlenoxyd reduziert wird.
Die handelsüblichen Brennstoffe der marktgängigen Sauggasanlagen sind: Anthrazit (sog. Motorenanthrazit) von 1,5 bis 4 cm Nußgröße, d. h. Körnung III oder III/II.

Hütten- oder Gaskokses\(^1\)) von 3 bis 5 cm Stückgröße und mit höchstens 10% Asche, lufttrocken. (Koklöschere und Grus siehe Seite 387.)

Braunkohlenbriketts (sog. Industriebriketts) bis zu 4 × 6 × 6 cm Stückgröße, höchstens 12—15% Feuchtigkeit, 10% Asche und 1,5% Schwefel enthaltend.

Andere, nicht so einfach zu vergasende Brennstoffe werden nur dann benutzt, wenn ihr Bezugspreis und die Größe der Kraftanlage eine wirtschaftliche Vergasung in besonderen Generatoren erlaubt läßt.

Aus 1 kg Anthrazit oder Koks erhält man durchschnittlich 4,5 cbm Kraftgas von 1200 bzw. 1100 WE/cbm mittlerem Heizwert, wobei gewöhnlich annähernd 3/4 kg Wasserdampf auf 1 kg Kohle eingeführt wird. (Mehr Wasser ist gastechnisch unwirtschaftlich, schont jedoch die inneren Feuerungsstücke.) Braunkohlenbriketts liefern auf 1 kg praktisch bis 3 cbm Sauggas, dessen Heizwert in der Nähe von 1100 WE/cbm liegt; wegen der Eigenfeuchtigkeit braucht hier nur wenig oder überhaupt kein Wasser von außen zugeführt zu werden (vgl. Seite 381).

Tafel 69. Kraftgas-Analysen von einem Koksgenerator.

<table>
<thead>
<tr>
<th>Zeit der Gasentnahme</th>
<th>Mittel der 8 Proben</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,40</td>
<td>10,55</td>
</tr>
<tr>
<td>CO(_4)</td>
<td>CO(_2)</td>
</tr>
<tr>
<td>6,5</td>
<td>48</td>
</tr>
<tr>
<td>26,6</td>
<td>28,2</td>
</tr>
<tr>
<td>1,3</td>
<td>2,7</td>
</tr>
<tr>
<td>6,8</td>
<td>5,9</td>
</tr>
<tr>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>58,7</td>
<td>58,4</td>
</tr>
</tbody>
</table>

Die durchschnittliche Dichte des Kraftgases beträgt 0,85 bis 0,95, sein spezifisches Gewicht also 1,2 bis 1,05 kg/cbm; zur vollkommenen Verbrennung sind theoretisch 0,95 bis 1,1 cbm Luft auf 1 cbm Gas erforderlich. Für das in Tafel 67 gefundene Durchschnittskraftgas sind die für den Konstrukteur wichtigen Verbrennungswerte in Tafel 70 berechnet. Den Gang dieser Berechnung zeigt der Theoret. Anhang.

\(^1\) Hüttenkoks ist vorzuziehen, weil er weniger Schlacken bildet, langsamer abbrennt, spezifisch schwerer ist und einen etwas höheren Heizwert hat.

\(^2\) Z. Ver. deutsch. Ing. 1896, Seite 1339 und 1304.

GÖLZNER, Verfeuerungskraftmaschinen. 3. Aufl.
Tafel 70. Durchschnittszahlen für Kraftgas aus Koks.

<table>
<thead>
<tr>
<th>Zusammensetzung des Kraftgases</th>
<th>1 cbm Gas enthält</th>
<th>H_G in WE</th>
<th>Theoret. Luftbedarf in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,070</td>
<td>0,006</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>CH₄</td>
<td>0,020</td>
<td>0,014</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,276</td>
<td>0,346</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO₂</td>
<td>0,048</td>
<td>0,005</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,586</td>
<td>0,736</td>
</tr>
<tr>
<td>Bezogen auf 1 cbm Kraftgas</td>
<td></td>
<td>1,000</td>
<td>1,197</td>
</tr>
</tbody>
</table>

Abgerundetes Endergebnis: Spezifisches Gewicht 1,2 kg/cbm, Dichte 0,93 (Luft = 1), unterer Heizwert 1200 WE/cbm oder 1200 : 1,2 = 1000 WE/kg, geringer LUftbedarf 1 cbm/cbm oder 1,3 kg/cbm oder 1,1 kg/kg.

Dieses Gas wurde aus Koks von 7338 WE/kg erzeugt und hat einen sehr kleinen Wasserstoffgehalt, der in dem niedrigen Heizwert und dem hohen spezifischen Gewichte hervortritt. Kraftgas aus Anthrazit enthält immer mehr Wasserstoff, weist daher eine größere Heizkraft und ein leichteres Gewicht auf. Der Unterschied ergibt sich aus Tafel 71, deren Angaben ein aus belgischem Anthrazit von rund 7900 WE/kg gewonnenes Kraftgas betreffen\(^1\).

Tafel 71. Durchschnittszahlen für Kraftgas aus Anthrazit.

<table>
<thead>
<tr>
<th>Zusammensetzung des Kraftgases</th>
<th>1 cbm Gas enthält</th>
<th>H_G in WE</th>
<th>Theoret. Luftbedarf in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,242</td>
<td>0,022</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>CH₄</td>
<td>0,020</td>
<td>0,014</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,166</td>
<td>0,208</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO₂</td>
<td>0,113</td>
<td>0,222</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,459</td>
<td>0,576</td>
</tr>
<tr>
<td>Bezogen auf 1 cbm Kraftgas</td>
<td></td>
<td>1,000</td>
<td>1,042</td>
</tr>
</tbody>
</table>

Tafel 72. Analysen von verschiedenen Briquetts.

<table>
<thead>
<tr>
<th>Lfd.-Nr.</th>
<th>Herkunft der Briketts</th>
<th>Zusammensetzung der Briketts in %</th>
<th>Heizwert WE/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H/C/O+N/Feuchtigkeit/Ash/Schlacke</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lauchhammer-Lausitz</td>
<td>4,41/49,90/27,79/11,30/5,56/1,04</td>
<td>4270</td>
</tr>
<tr>
<td>2</td>
<td>Bockwitz-Lausitz</td>
<td>4,00/53,88/23,57/13,88/4,38/1,09</td>
<td>4580</td>
</tr>
<tr>
<td>3</td>
<td>Union-Rheinland</td>
<td>4,25/54,73/21,12/12,81/5,79/1,0</td>
<td>4940</td>
</tr>
<tr>
<td>4</td>
<td>Trendelbusch-Braunschweig</td>
<td>5,03/52,05/16,28/15,28/8,82/2,54</td>
<td>5060</td>
</tr>
<tr>
<td>5</td>
<td>Riebeck Montan-Halle</td>
<td>4,86/53,73/17,57/12,14/9,30/2,70</td>
<td>5130</td>
</tr>
<tr>
<td>6</td>
<td>Braunkohlenbezirk</td>
<td>4,29/49,21/27,15/13,18/4,57/4,18</td>
<td>4718</td>
</tr>
<tr>
<td>7</td>
<td>außerdem 1,60 bzw. 1,29% S.</td>
<td>4,82/48,42/24,49/11,50/4,93/4,62</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Senftenberg bei Frankf. a. O.</td>
<td>4,37/53,03/53,03/15,30/4,51/4,750</td>
<td>4622</td>
</tr>
</tbody>
</table>

Abgerundetes Endergebnis: Spezifisches Gewicht 1,04 kg/cbm, Dichte 0,8 (Luft = 1), unterer Heizwert 1300 WE/cbm oder 1300:1,04 = 1250 WE/kg; geringster Luftbedarf 1,15 cbm/cbm oder 1,5 kg/cbm oder 1,45 kg/kg.

Im Braunkohlen-Kraftgas machen sich neben den Schwankungen in der Zusammensetzung der Kohle die Störungen im Beharrungszustand des Generators u. dgl. besonders merklich; das erklärt die oft beträchtlichen Unterschiede in manchen Gasanalysen, von denen ich in Tafel 72 eine Anzahl zusammengestellt habe. Die Analysen 1—5 stammen von KÖRTING-Generatoren, 6—9 von den angegebenen Lieferungsfirmen; Analyse 10 ist an einem Pintsch-Generator ermittelt.

Das hieraus hervorgehende Durchschnittsgas hat etwa folgende Eigenschaften:

Tafel 73.
für Kraftgas aus Braunkohlenbriketts.

<table>
<thead>
<tr>
<th>Zusammensetzung des Kraftgases</th>
<th>1 cbm Gas enthält</th>
<th>(H_\alpha) in WE</th>
<th>Theoretischer Luftbedarf in cbm kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff H</td>
<td>0,16 kg</td>
<td>0,014 kg</td>
<td>410 kg</td>
</tr>
<tr>
<td>Sumpfgas u. dgl. CH₄</td>
<td>0,02 kg</td>
<td>0,014 kg</td>
<td>170 kg</td>
</tr>
<tr>
<td>Kohlenoxyd CO</td>
<td>0,20 kg</td>
<td>0,255 kg</td>
<td>610 kg</td>
</tr>
<tr>
<td>Kohlensäure CO₂</td>
<td>0,008 kg</td>
<td>0,137 kg</td>
<td>— kg</td>
</tr>
<tr>
<td>Stickstoff N</td>
<td>0,054 kg</td>
<td>0,630 kg</td>
<td>— kg</td>
</tr>
<tr>
<td>Bezogen auf 1 cbm Kraftgas</td>
<td>1,000 kg</td>
<td>1,120 kg</td>
<td>1130 kg</td>
</tr>
</tbody>
</table>

Abgerundetes Endergebnis: Spezifisches Gewicht 1,1 kg/cbm, Dichte 0,90 (Luft = 1); unterer Heizwert 1200 WE/cbm oder 1200:1,1 = 1100 WE/kg; geringster Luftbedarf 1 cbm/cbm oder 1,3 kg/cbm oder 1,2 kg/kg.

Der Teergehalt soll bei derartigen Gasen so gering wie möglich sein; die Grenze des für den Motorbetrieb Zulässigen liegt etwa bei 0,05 g/cbm; bei gutem Generatorzustande und vorzüglicher Reinigungsanlage sind 0,02 g Teer in 1 cbm Gas zu erreichen.

Tafel 72.

<table>
<thead>
<tr>
<th>Zusammensetzung der Gase in %</th>
<th>Heizwert WE/cbm</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>CO</td>
<td>CH₄ usw.</td>
</tr>
<tr>
<td>14,9</td>
<td>21,2</td>
<td>1,3</td>
</tr>
<tr>
<td>16,3</td>
<td>11,8</td>
<td>2,0</td>
</tr>
<tr>
<td>16,2</td>
<td>19,5</td>
<td>2,8</td>
</tr>
<tr>
<td>17,3</td>
<td>15,6</td>
<td>2,4</td>
</tr>
<tr>
<td>15,0</td>
<td>18,6</td>
<td>1,5</td>
</tr>
</tbody>
</table>

\(H_{\alpha} \) = \(\text{Gasausbeute: Belastung:} \) 1371, 3,115 cbm/kg 22,5 KW 6
\(\text{Nach Z. d. Ver. d. Ing. 1904, Seite 145 und 1272.} \)

<table>
<thead>
<tr>
<th>Zusammensetzung der Gase in %</th>
<th>Heizwert WE/cbm</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,5</td>
<td>27,5</td>
<td>2,25</td>
</tr>
</tbody>
</table>

29*
III. Hochofengas.

Das Hochofengas (Gichtgas) steht als zwar wärmearmes, aber doch sicher entzündbares Abgas der Hüttentechnik in so großen Mengen zur Verfügung, daß ein Viertel davon genügen würde, den gesamten Kraftbedarf des betreffenden Hochofenwerkes zu decken; es blieben also rund drei Viertel des Gichtgases nach außen verwendbar. Auf 1 t Roheisen kommt ungefähr das gleiche Gewicht Koks und etwa 4 t Gebläseluft (Wind); 1 t Roheisen liefert also durchschnittlich 5 t, das sind rund 4000 cbm Gichtgas und ein mittlergroßer Hochofen von 150 t Tagesleistung danach 600 000 cbm Gas in 24 Stunden. Davon möge die Hälfte in den Winderhitzern des Ofens verbrannt werden; es bleiben so noch 300 000 cbm, womit in Gasmaschinen mindestens 4000 PSe in 24 stündigem Betrieb geleistet werden können. (Unter Dampfkesseln verfeuert, würde diese Gasmenge noch nicht 1500 PSe leisten.) Vergegenwärtigen muss man sich noch, daß einige Hochofenanlagen täglich 1100 bis 1200 t verbrühen, also das achtzehnfache des angenommenen Wertes erreichen1), so ist klar, welche hohe Bedeutung die unmittelbare Verwertung des Gichtgases als Treibmittel für den Großmaschinenbau und für den Hüttenbetrieb hat.

Tafel 74. Gichtgas-Analysen.

<table>
<thead>
<tr>
<th>Zusammensetzung der Gichtgase</th>
<th>Eisenhüttenkunde von Lenzburg 1963, Seite 100.</th>
<th>Hütte in Westfalen</th>
<th>Hütte in Oberschlesien</th>
<th>Hütte in Oberschlesien</th>
<th>Hütte im Minettebezirk</th>
<th>Durchschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenoxyd CO</td>
<td>24,0</td>
<td>21,6</td>
<td>29,0</td>
<td>26,1</td>
<td>29,7</td>
<td>23,0</td>
</tr>
<tr>
<td>Wasserstoff H</td>
<td>2,0</td>
<td>1,8</td>
<td>4,0</td>
<td>3,6</td>
<td>6,3</td>
<td>3,0</td>
</tr>
<tr>
<td>Sumpfgas CH₄</td>
<td>2,0</td>
<td>1,8</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Kohlensäure CO₂</td>
<td>12,0</td>
<td>10,8</td>
<td>10,0</td>
<td>9,0</td>
<td>7,8</td>
<td>6,0</td>
</tr>
<tr>
<td>Stickstoff N</td>
<td>60,0</td>
<td>54,0</td>
<td>57,0</td>
<td>51,3</td>
<td>56,2</td>
<td>59,0</td>
</tr>
<tr>
<td>Wasser dampf H₂O</td>
<td>.</td>
<td>10,0</td>
<td>.</td>
<td>10,0</td>
<td>.</td>
<td>12,0</td>
</tr>
</tbody>
</table>

\[
\gamma \text{ in kg/cbm} = 1.3055 + 1.2555 \times 1.2786 + 1.3122 \times 1.2811 + 1.2429 \times 1.2678 + 1.2661
\]

\[
H_a \text{ in WE/cbm} = 944.4 + 849.8 \times 978.1 + 879.6 \times 883.0 + 691.6 \times 906.5 + 877.6
\]

Das schwerste, anfangs unüberwindlich scheinende Hemmnis für die motorische Verwertung des Hochofengases ist dessen großer Staubgehalt. In besonders ungünstigen Fällen enthält 1 cbm Gas an 20 g Gichtstaub und zudem noch gewisse Metalldämpfe, die erst durch die Verbrennung im Zylinder Staubform annehmen. Ziemlich leicht läßt sich der grobe Koks-, Eisenstein- und Kalksteinstaub aus dem Gase entfernen.

1) Z. B. die Gutehoffnungshütte in Oberhausen und die Gewerkschaft Deutscher Kaiser in Bruckhausen.
2) Stahl und Eisen 1901, Heft 21.
fernen, wozu schon vor Einführung des Gasmaschinenbetriebes auf manchen Werken einfache, zweckentsprechende Reinigungsanlagen vorhanden waren. Diese zeigten sich aber gegenüber dem, für Motoren am gefährlichsten Feinstaub als unzulänglich, weshalb hierfür besondere Einrichtungen erst erforderlich wurden mußten.

Tafel 75. Betriebszahlen von Gichtgas-Reinigungsanlagen.

<table>
<thead>
<tr>
<th></th>
<th>Gute Hoffnungshütte</th>
<th>Georgs-Marienhütte</th>
<th>Friedenshütte O.-S.</th>
<th>Düdelingen</th>
<th>Donnersmarchhütte</th>
<th>Differdingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Staubgehalt der Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) vor den Trockenreinigern, in 1 cbm g</td>
<td>5,9</td>
<td>7,50</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>10,62</td>
</tr>
<tr>
<td>hinter den Trockenreinigern, in 1 cbm g</td>
<td>5,3</td>
<td>.</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>b) vor den Naßreinigern, in 1 cbm g</td>
<td>3,0</td>
<td>2,91</td>
<td>0,6—1,6</td>
<td>0,375</td>
<td>.</td>
<td>5,32</td>
</tr>
<tr>
<td>hinter den Naßreinigern, in 1 cbm g</td>
<td>0,47</td>
<td>.</td>
<td>.</td>
<td>0,249</td>
<td>2,5</td>
<td>2,72</td>
</tr>
<tr>
<td>c) vor den letzten Reinigern, in 1 cbm g</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0,1</td>
<td>.</td>
</tr>
<tr>
<td>hinter den letzten Reinigern, in 1 cbm g</td>
<td>0,25</td>
<td>.</td>
<td>0,002</td>
<td>.</td>
<td>0,187</td>
<td>.</td>
</tr>
<tr>
<td>d) an den Gasmaschinen</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2. Wassergehalt der Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) vor den Reinigern, in 1 cbm g</td>
<td>7 Vol.%</td>
<td>142,09</td>
<td>13,5</td>
<td>.</td>
<td>30</td>
<td>.</td>
</tr>
<tr>
<td>b) hinter den Reinigern, in 1 cbm g</td>
<td>1,5 Vol.%</td>
<td>27,27</td>
<td>5,5</td>
<td>.</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>3. Temperatur der Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) vor den Reinigern . . °C</td>
<td>170</td>
<td>162</td>
<td>330</td>
<td>90—100</td>
<td>38,6</td>
<td>.</td>
</tr>
<tr>
<td>c) an der Maschine . . °C Lufttemper.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>3b—12</td>
<td>.</td>
</tr>
<tr>
<td>4. Druck (Wassersäule) der Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) vor den Reinigern mm</td>
<td>150</td>
<td>.</td>
<td>90—150</td>
<td>5—10</td>
<td>5,5</td>
<td>30</td>
</tr>
<tr>
<td>b) hinter den Reinigern mm</td>
<td>90</td>
<td>.</td>
<td>20—60</td>
<td>50</td>
<td>50,0</td>
<td>80—100</td>
</tr>
<tr>
<td>5. Menge der Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge- waschen in 1 Std. cbm</td>
<td>26200</td>
<td>24000 f. d. Winderhütz. 2200</td>
<td>10000</td>
<td>2200—1100</td>
<td>2500—1500</td>
<td>9000</td>
</tr>
<tr>
<td>6. Menge des Wasch- bzw. Kühl- wassers in der Stunde cbm</td>
<td>50</td>
<td>.</td>
<td>100</td>
<td>.</td>
<td>21,6 cbm</td>
<td>12 ltr f. 1 cbm</td>
</tr>
<tr>
<td>7. Menge des ausgewaschenen Staubes in der Stunde kg</td>
<td>60,26</td>
<td>.</td>
<td>9</td>
<td>.</td>
<td>.</td>
<td>35,5</td>
</tr>
<tr>
<td>8. Waschwasserverbrauch:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) auf 1 PSe(st.) ltr</td>
<td>6,7</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>4,7</td>
<td>.</td>
</tr>
<tr>
<td>b) auf 1 cbm Gas ltr</td>
<td>1,9</td>
<td>.</td>
<td>10</td>
<td>1,55</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9. Kärletsche:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Flächengröße . . qm</td>
<td>43,3</td>
<td>.</td>
<td>120000</td>
<td>500</td>
<td>.</td>
<td>360 cbm</td>
</tr>
<tr>
<td>b) Tiefe des Wasserstandes in den selben . . mm</td>
<td>1100</td>
<td>1500</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>c) Anlagekosten . . Mk.</td>
<td>93600</td>
<td>30000</td>
<td>198000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Mit guten Reinigungsanlagen läßt sich der Staubgehalt bis auf 0,02 g für 1 cbm Gas bringen; mehr als 0,05 g/cbm sollten von den Erbauern der Gasmaschinen nicht zugelassen werden. Gewöhnlich stellen die Hüttenwerke selbst die Reinigung.

Aus der in der letzten Spalte der Tafel 74 angegebenen Durchschnittszusammensetzung erhält man nach unwesentlicher Abrundung das in folgender Tafel durchgerechnete mittlere Gichtgas.

Tafel 76.

Durchschnittszahlen für Gichtgas.

<table>
<thead>
<tr>
<th>Zusammensetzung des Gichtgases</th>
<th>1 cbm Gas enthält</th>
<th>Theoretischer Luftbedarf in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cbm</td>
<td>kg</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,030</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>CH<sub>4</sub></td>
<td>0,005</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,260</td>
</tr>
<tr>
<td>Wasserdampf</td>
<td>H<sub>2</sub>O</td>
<td>0,050</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO<sub>2</sub></td>
<td>0,085</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,560</td>
</tr>
<tr>
<td>Bezogen auf 1 cbm Gichtgas</td>
<td>1,000</td>
<td>1,223</td>
</tr>
</tbody>
</table>

Abgerundetes Ergebnis: Spezifisches Gewicht 1,25 kg/cbm, Dichte 0,8 (Luft = 1), unterer Heizwert 900 WE/cbm oder 720 WE/kg, geringster Luftbedarf 0,73 cbm/cbm oder 0,95 kg/cbm oder 0,76 kg/kg.

IV. Koksofengas.

1) Die Firma En. THEISEN München gibt für ihre bekannten „Zentrifugal-Gegengstrom-Gaswascher“ folgende Garantiezahlen an: Kraftbedarf 1—2% der Gasmaschinenleistung; Wasserverbrauch 1—1,5 ltr auf 1 cbm Gas; Reinheitsgrad 0,02—0,03 g Staub in 1 cbm Gas.

Tafel 77. Durchschnittszahlen für Koksofengas.

| Zusammensetzung des Koksofengases | 1 cbm Gas enthält | \(H_u \) in WE | Theoretischer Luftbedarf in
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,550</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>CH₄</td>
<td>0,320</td>
</tr>
<tr>
<td>Äthylen</td>
<td>C₂H₄</td>
<td>0,015</td>
</tr>
<tr>
<td>Benzol</td>
<td>C₆H₆</td>
<td>0,008</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,070</td>
</tr>
<tr>
<td>Wasserdampf</td>
<td>H₂O</td>
<td>0,010</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO₂</td>
<td>0,012</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,015</td>
</tr>
</tbody>
</table>

Bezogen auf 1 cbm Koksofengas:

| 1 cbm | 0,464 | 4865 | 4,969 | 6,422 |

Abgerundetes Ergebnis: Spezifisches Gewicht 0,465 kg/cbm, Dichte 0,36 (Luft = 1), unterer Heizwert 4850 WE/cbm oder 10 000 WE/kg, geringster Luftbedarf 5 cbm/cbm oder 6,5 kg/cbm oder 14 kg/kg.

V. Braunkohlen-Schwelgas.

Die in folgender Tafel durchgerechnete Zusammensetzung eines Schwelgases gibt Dammer in seiner Chemischen Technologie an.

Tafel 78. Durchschnittszahlen für Braunkohlen-Schwelgas.

<table>
<thead>
<tr>
<th>Zusammensetzung des Schwelgases</th>
<th>1 cbm Gas enthält</th>
<th>(H_u) in WE</th>
<th>Theoretischer Luftbedarf in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cbm</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>0,243</td>
<td>0,023</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>C₂H₆</td>
<td>0,165</td>
<td>0,118</td>
</tr>
<tr>
<td>Schwere Kohlenwasserstoff</td>
<td>C₆H₆</td>
<td>0,014</td>
<td>0,018</td>
</tr>
<tr>
<td>Kohlenoxyd</td>
<td>CO</td>
<td>0,081</td>
<td>0,101</td>
</tr>
<tr>
<td>Schwefelwasserstoff</td>
<td>H₂S</td>
<td>0,011</td>
<td>0,034</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO₂</td>
<td>0,170</td>
<td>0,014</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>O</td>
<td>0,031</td>
<td>0,044</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,285</td>
<td>0,358</td>
</tr>
</tbody>
</table>

Bezogen auf 1 cbm Schwelgas:

| 1 cbm | 1,009 | 2471 | 2,367 | 3,062 |

Abgerundetes Ergebnis: Spezifisches Gewicht 1,0 kg/cbm, Dichte 0,78 (Luft = 1), unterer Heizwert 2470 WE/cbm oder 2450 WE/kg, geringerster Luftbedarf 2,4 cbm/cbm oder 3,1 kg/cbm oder 3 kg/kg.
VI. Erdgas oder Naturgas.

Dieses, durch hohen Heizwert und fast vollkommene Reinheit ausgezeichnete natürliche Brenngas kommt innerhalb Deutschlands nur an wenigen Stellen vor\(^1\), wird aber in einigen Auslandstaaten (vornehmlich in den Petroleumländern) so reichlich gewonnen, daß es für den deutschen Gasmaschinenexport Bedeutung erlangt hat. Das Naturgas entströmt der Erde entweder in eigenen Quellen und trockenen Bohrlöchern, oder wird aus dem Petroleumsonden als Nebenprodukt aufgefangen; zuweilen stößt man auch beim Erbohren von Wasser oder Erzen auf ergiebige Naturgasschichten\(^2\). In den meisten Fällen tritt das Gas mit solcher Spannung aus, daß diese für eine Aufspeicherung und Verteilung in der Nähe des Fundortes genügt; sonst läßt es im kleinen durch den Motor selbst, im großen durch eigene Pumpen absaugen.

Analysen

\textbf{Tafel 79.}

von Naturgasen aus den südrussischen Erdölgebieten.

<table>
<thead>
<tr>
<th>Gasprobe Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>CH(_4)</td>
<td>92,25</td>
<td>76,37</td>
<td>72,85</td>
<td>81,65</td>
<td>66,95</td>
<td>55,10</td>
</tr>
<tr>
<td>Andere Kohlenwasserstoffe</td>
<td>C(_n)H(_m)</td>
<td>1,37</td>
<td>—</td>
<td>0,62</td>
<td>1,10</td>
<td>0,60</td>
<td>1,00</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>CO(_2)</td>
<td>0,36</td>
<td>3,13</td>
<td>3,03</td>
<td>2,45</td>
<td>0,80</td>
<td>3,30</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>O</td>
<td>0,49</td>
<td>13,50</td>
<td>12,00</td>
<td>10,02</td>
<td>3,20</td>
<td>11,80</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>4,53</td>
<td>7,00</td>
<td>11,50</td>
<td>4,78</td>
<td>28,50</td>
<td>28,30</td>
</tr>
<tr>
<td>Heizwert (H)</td>
<td>WE / cbm</td>
<td>~8000</td>
<td>6950</td>
<td>6700</td>
<td>7700</td>
<td>6200</td>
<td>5250</td>
</tr>
</tbody>
</table>

Der Hauptbestandteil eines Naturgases, ohne Rücksicht auf den Ursprungsort, ist Methan; es übersteigt, dicht am Bohrloch analysiert, regelmäßig 90%\(^3\). Beim Absaugen und Aufspeichern verdünnt die von außen hineingelangende Luft das Gas, was sich in der Zunahme von O, N und CO\(_2\) sowie in dem verminderten Heizwert zeigt. (In Tafel 79 bezieht sich Analyse 1 auf den reinen, unverdünnten Zustand; die übrigen Proben sind an den Verbrauchsstellen entnommen.) Der Luftbedarf ist wegen des hohen CH\(_4\)-Gehaltes groß, theoretisch mindestens 10 cbm/cbm oder 18 kg/kg\(^4\); die spezifische Schwere liegt nur wenig unter derjenigen der atmosphärischen Luft. Bei den rumänischen Naturgasen erreicht die Kohlensäure durchschnittlich 15%, also erheblich mehr als in den obengenannten russischen Gasen ermittelt wurde. Die Entflammung verläuft ruhig, in unerprobten Maschinen sogar schleichend, worauf bei den Zünd- und Mischorganen in der Höhe der Verdichtung und auch bei der Kühlung Rücksicht zu nehmen ist.

\(^1\) Ältere kleine Quellen finden sich in dem hannoverschen Erdölgebiet, ferner bei Bergedorf usw.
\(^2\) Die größte deutsche Naturgasquelle wurde 1910 beim Bohren nach Wasser in Neuengamme bei Hamburg angeschnitten; das Gas ist fast reines Methan und steht unter einem Drucke von 24 at. Man begnügt jetzt, die Ergiebigkeit durch Dampfkesselbeheizung zu erproben.
\(^3\) Das erwähnte Naturgas von Neuengamme hat keine wesentlich andere Zusammensetzung als z. B. das von Pittsburg, nämlich 91,5% CH\(_4\), 2,1% andere schwere Kohlenwasserstoffe, 1,5% O, ~5% CO\(_2\) + N.